- -

Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chin, Sanghoon es_ES
dc.contributor.author Thevenaz, Luc es_ES
dc.contributor.author Sancho Durá, Juan es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.contributor.author Berger, Perrine es_ES
dc.contributor.author Bourderionnet, Jerome es_ES
dc.contributor.author Dolfi, Daniel es_ES
dc.date.accessioned 2016-02-05T10:40:46Z
dc.date.available 2016-02-05T10:40:46Z
dc.date.issued 2010-10-11
dc.identifier.uri http://hdl.handle.net/10251/60653
dc.description.abstract [EN] We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters. (C) 2010 Optical Society of America es_ES
dc.description.sponsorship We acknowledge the support from the Swiss National Science Foundation through project 200020-121860 and the support from the European Union FP7 project GOSPEL. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America: Open Access Journals es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fiber optics es_ES
dc.subject Analogue signal processing es_ES
dc.subject Scattering es_ES
dc.subject Stimulated Brillouin es_ES
dc.subject Nonlinear optics es_ES
dc.subject Fibers es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.18.022599
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/219299/EU/Governing the speed of light/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//200020_121860/CH/Study of light-matter interaction using slow light in optical fibres/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Chin, S.; Thevenaz, L.; Sancho Durá, J.; Sales Maicas, S.; Capmany Francoy, J.; Berger, P.; Bourderionnet, J.... (2010). Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers. Optics Express. 18(21):22599-22613. https://doi.org/10.1364/OE.18.022599 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.18.022599 es_ES
dc.description.upvformatpinicio 22599 es_ES
dc.description.upvformatpfin 22613 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 21 es_ES
dc.relation.senia 40859 es_ES
dc.identifier.eissn 1094-4087
dc.contributor.funder Swiss National Science Foundation
dc.contributor.funder European Commission
dc.description.references Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 es_ES
dc.description.references Dolfi, D., Joffre, P., Antoine, J., Huignard, J.-P., Philippet, D., & Granger, P. (1996). Experimental demonstration of a phased-array antenna optically controlled with phase and time delays. Applied Optics, 35(26), 5293. doi:10.1364/ao.35.005293 es_ES
dc.description.references Yunqi Liu, Jianliang Yang, & Jianping Yao. (2002). Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line. IEEE Photonics Technology Letters, 14(8), 1172-1174. doi:10.1109/lpt.2002.1022008 es_ES
dc.description.references Mørk, J., Kjær, R., van der Poel, M., & Yvind, K. (2005). Slow light in a semiconductor waveguide at gigahertz frequencies. Optics Express, 13(20), 8136. doi:10.1364/opex.13.008136 es_ES
dc.description.references Su, H., Kondratko, P., & Chuang, S. L. (2006). Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Optics Express, 14(11), 4800. doi:10.1364/oe.14.004800 es_ES
dc.description.references Shi, Z., & Boyd, R. W. (2009). Discretely tunable optical packet delays using channelized slow light. Physical Review A, 79(1). doi:10.1103/physreva.79.013805 es_ES
dc.description.references Morton, P. A., & Khurgin, J. B. (2009). Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier. IEEE Photonics Technology Letters, 21(22), 1686-1688. doi:10.1109/lpt.2009.2031500 es_ES
dc.description.references Song, K. Y., Herr�ez, M. G., & Th�venaz, L. (2005). Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Optics Express, 13(1), 82. doi:10.1364/opex.13.000082 es_ES
dc.description.references Thévenaz, L. (2008). Slow and fast light in optical fibres. Nature Photonics, 2(8), 474-481. doi:10.1038/nphoton.2008.147 es_ES
dc.description.references Nikles, M., Thevenaz, L., & Robert, P. A. (1997). Brillouin gain spectrum characterization in single-mode optical fibers. Journal of Lightwave Technology, 15(10), 1842-1851. doi:10.1109/50.633570 es_ES
dc.description.references Loayssa, A., & Lahoz, F. J. (2006). Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technology Letters, 18(1), 208-210. doi:10.1109/lpt.2005.861307 es_ES
dc.description.references González Herráez, M., Song, K. Y., & Thévenaz, L. (2006). Arbitrary-bandwidth Brillouin slow light in optical fibers. Optics Express, 14(4), 1395. doi:10.1364/oe.14.001395 es_ES
dc.description.references Weiqi Xue, Sales, S., Mork, J., & Capmany, J. (2009). Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects. IEEE Photonics Technology Letters, 21(3), 167-169. doi:10.1109/lpt.2008.2009468 es_ES
dc.description.references Sagues, M., García Olcina, R., Loayssa, A., Sales, S., & Capmany, J. (2008). Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering. Optics Express, 16(1), 295. doi:10.1364/oe.16.000295 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem