Mostrar el registro sencillo del ítem
dc.contributor.author | Chin, Sanghoon | es_ES |
dc.contributor.author | Thevenaz, Luc | es_ES |
dc.contributor.author | Sancho Durá, Juan | es_ES |
dc.contributor.author | Sales Maicas, Salvador | es_ES |
dc.contributor.author | Capmany Francoy, José | es_ES |
dc.contributor.author | Berger, Perrine | es_ES |
dc.contributor.author | Bourderionnet, Jerome | es_ES |
dc.contributor.author | Dolfi, Daniel | es_ES |
dc.date.accessioned | 2016-02-05T10:40:46Z | |
dc.date.available | 2016-02-05T10:40:46Z | |
dc.date.issued | 2010-10-11 | |
dc.identifier.uri | http://hdl.handle.net/10251/60653 | |
dc.description.abstract | [EN] We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters. (C) 2010 Optical Society of America | es_ES |
dc.description.sponsorship | We acknowledge the support from the Swiss National Science Foundation through project 200020-121860 and the support from the European Union FP7 project GOSPEL. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America: Open Access Journals | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fiber optics | es_ES |
dc.subject | Analogue signal processing | es_ES |
dc.subject | Scattering | es_ES |
dc.subject | Stimulated Brillouin | es_ES |
dc.subject | Nonlinear optics | es_ES |
dc.subject | Fibers | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.18.022599 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/219299/EU/Governing the speed of light/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SNSF//200020_121860/CH/Study of light-matter interaction using slow light in optical fibres/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Chin, S.; Thevenaz, L.; Sancho Durá, J.; Sales Maicas, S.; Capmany Francoy, J.; Berger, P.; Bourderionnet, J.... (2010). Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers. Optics Express. 18(21):22599-22613. https://doi.org/10.1364/OE.18.022599 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.18.022599 | es_ES |
dc.description.upvformatpinicio | 22599 | es_ES |
dc.description.upvformatpfin | 22613 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 21 | es_ES |
dc.relation.senia | 40859 | es_ES |
dc.identifier.eissn | 1094-4087 | |
dc.contributor.funder | Swiss National Science Foundation | |
dc.contributor.funder | European Commission | |
dc.description.references | Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 | es_ES |
dc.description.references | Dolfi, D., Joffre, P., Antoine, J., Huignard, J.-P., Philippet, D., & Granger, P. (1996). Experimental demonstration of a phased-array antenna optically controlled with phase and time delays. Applied Optics, 35(26), 5293. doi:10.1364/ao.35.005293 | es_ES |
dc.description.references | Yunqi Liu, Jianliang Yang, & Jianping Yao. (2002). Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line. IEEE Photonics Technology Letters, 14(8), 1172-1174. doi:10.1109/lpt.2002.1022008 | es_ES |
dc.description.references | Mørk, J., Kjær, R., van der Poel, M., & Yvind, K. (2005). Slow light in a semiconductor waveguide at gigahertz frequencies. Optics Express, 13(20), 8136. doi:10.1364/opex.13.008136 | es_ES |
dc.description.references | Su, H., Kondratko, P., & Chuang, S. L. (2006). Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Optics Express, 14(11), 4800. doi:10.1364/oe.14.004800 | es_ES |
dc.description.references | Shi, Z., & Boyd, R. W. (2009). Discretely tunable optical packet delays using channelized slow light. Physical Review A, 79(1). doi:10.1103/physreva.79.013805 | es_ES |
dc.description.references | Morton, P. A., & Khurgin, J. B. (2009). Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier. IEEE Photonics Technology Letters, 21(22), 1686-1688. doi:10.1109/lpt.2009.2031500 | es_ES |
dc.description.references | Song, K. Y., Herr�ez, M. G., & Th�venaz, L. (2005). Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Optics Express, 13(1), 82. doi:10.1364/opex.13.000082 | es_ES |
dc.description.references | Thévenaz, L. (2008). Slow and fast light in optical fibres. Nature Photonics, 2(8), 474-481. doi:10.1038/nphoton.2008.147 | es_ES |
dc.description.references | Nikles, M., Thevenaz, L., & Robert, P. A. (1997). Brillouin gain spectrum characterization in single-mode optical fibers. Journal of Lightwave Technology, 15(10), 1842-1851. doi:10.1109/50.633570 | es_ES |
dc.description.references | Loayssa, A., & Lahoz, F. J. (2006). Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technology Letters, 18(1), 208-210. doi:10.1109/lpt.2005.861307 | es_ES |
dc.description.references | González Herráez, M., Song, K. Y., & Thévenaz, L. (2006). Arbitrary-bandwidth Brillouin slow light in optical fibers. Optics Express, 14(4), 1395. doi:10.1364/oe.14.001395 | es_ES |
dc.description.references | Weiqi Xue, Sales, S., Mork, J., & Capmany, J. (2009). Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects. IEEE Photonics Technology Letters, 21(3), 167-169. doi:10.1109/lpt.2008.2009468 | es_ES |
dc.description.references | Sagues, M., García Olcina, R., Loayssa, A., Sales, S., & Capmany, J. (2008). Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering. Optics Express, 16(1), 295. doi:10.1364/oe.16.000295 | es_ES |