- -

Latent Structures based-Multivariate Statistical Process Control: a paradigm shift

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Latent Structures based-Multivariate Statistical Process Control: a paradigm shift

Mostrar el registro completo del ítem

Ferrer, A. (2014). Latent Structures based-Multivariate Statistical Process Control: a paradigm shift. Quality Engineering. 26(1):72-91. https://doi.org/10.1080/08982112.2013.846093

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60805

Ficheros en el ítem

Metadatos del ítem

Título: Latent Structures based-Multivariate Statistical Process Control: a paradigm shift
Autor: Ferrer, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
The basic fundamentals of statistical process control (SPC) were proposed by Walter Shewhart for data-starved production environments typical in the 1920s and 1930s. In the 21st century, the traditional scarcity of data ...[+]
Palabras clave: Control charts , Latent structures , Multivariate statistical process control (MSPC) , Partial least squares (PLS) , Principal component analysis (PCA) , Quality improvement
Derechos de uso: Reserva de todos los derechos
Fuente:
Quality Engineering. (issn: 0898-2112 ) (eissn: 1532-4222 )
DOI: 10.1080/08982112.2013.846093
Editorial:
Taylor & Francis
Versión del editor: http://dx.doi.org/10.1080/08982112.2013.846093
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/
Agradecimientos:
This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02.
Tipo: Artículo

References

Aparisi, F., Jabaioyes, J., & Carrion, A. (1999). Statistical properties of the lsi multivariate control chart. Communications in Statistics - Theory and Methods, 28(11), 2671-2686. doi:10.1080/03610929908832445

Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750

Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543. doi:10.1002/qre.829 [+]
Aparisi, F., Jabaioyes, J., & Carrion, A. (1999). Statistical properties of the lsi multivariate control chart. Communications in Statistics - Theory and Methods, 28(11), 2671-2686. doi:10.1080/03610929908832445

Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750

Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543. doi:10.1002/qre.829

Bharati, M. H., & MacGregor, J. F. (1998). Multivariate Image Analysis for Real-Time Process Monitoring and Control. Industrial & Engineering Chemistry Research, 37(12), 4715-4724. doi:10.1021/ie980334l

Bharati, M. H., MacGregor, J. F., & Tropper, W. (2003). Softwood Lumber Grading through On-line Multivariate Image Analysis Techniques. Industrial & Engineering Chemistry Research, 42(21), 5345-5353. doi:10.1021/ie0210560

Bisgaard, S. (2012). The Future of Quality Technology: From a Manufacturing to a Knowledge Economy & From Defects to Innovations. Quality Engineering, 24(1), 30-36. doi:10.1080/08982112.2011.627010

Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. The Annals of Mathematical Statistics, 25(2), 290-302. doi:10.1214/aoms/1177728786

Camacho, J., & Ferrer, A. (2012). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects. Journal of Chemometrics, 26(7), 361-373. doi:10.1002/cem.2440

Duchesne, C., Liu, J. J., & MacGregor, J. F. (2012). Multivariate image analysis in the process industries: A review. Chemometrics and Intelligent Laboratory Systems, 117, 116-128. doi:10.1016/j.chemolab.2012.04.003

Efron, B., & Gong, G. (1983). A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. The American Statistician, 37(1), 36-48. doi:10.1080/00031305.1983.10483087

Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304

Fuchs, C. (1998). Multivariate Quality Control. doi:10.1201/9781482273731

Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9

Helland, I. S. (1988). On the structure of partial least squares regression. Communications in Statistics - Simulation and Computation, 17(2), 581-607. doi:10.1080/03610918808812681

Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, 2(3), 211-228. doi:10.1002/cem.1180020306

Hunter, J. S. (1986). The Exponentially Weighted Moving Average. Journal of Quality Technology, 18(4), 203-210. doi:10.1080/00224065.1986.11979014

Edward Jackson, J. (1985). Multivariate quality control. Communications in Statistics - Theory and Methods, 14(11), 2657-2688. doi:10.1080/03610928508829069

Jackson, J. E., & Mudholkar, G. S. (1979). Control Procedures for Residuals Associated With Principal Component Analysis. Technometrics, 21(3), 341-349. doi:10.1080/00401706.1979.10489779

Process analysis and abnormal situation detection: from theory to practice. (2002). IEEE Control Systems, 22(5), 10-25. doi:10.1109/mcs.2002.1035214

Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859

Kourti, T. (2006). Process Analytical Technology Beyond Real-Time Analyzers: The Role of Multivariate Analysis. Critical Reviews in Analytical Chemistry, 36(3-4), 257-278. doi:10.1080/10408340600969957

Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699

Liu, R. Y. (1995). Control Charts for Multivariate Processes. Journal of the American Statistical Association, 90(432), 1380-1387. doi:10.1080/01621459.1995.10476643

Liu, R. Y., Singh, K., & Teng*, J. H. (2004). DDMA-charts: Nonparametric multivariate moving average control charts based on data depth. Allgemeines Statistisches Archiv, 88(2), 235-258. doi:10.1007/s101820400170

Liu, R. Y., & Tang, J. (1996). Control Charts for Dependent and Independent Measurements Based on Bootstrap Methods. Journal of the American Statistical Association, 91(436), 1694-1700. doi:10.1080/01621459.1996.10476740

LOWRY, C. A., & MONTGOMERY, D. C. (1995). A review of multivariate control charts. IIE Transactions, 27(6), 800-810. doi:10.1080/07408179508936797

MacGregor, J. F. (1997). Using On-Line Process Data to Improve Quality: Challenges for Statisticians. International Statistical Review, 65(3), 309-323. doi:10.1111/j.1751-5823.1997.tb00311.x

Mason, R. L., Champ, C. W., Tracy, N. D., Wierda, S. J., & Young, J. C. (1997). Assessment of Multivariate Process Control Techniques. Journal of Quality Technology, 29(2), 140-143. doi:10.1080/00224065.1997.11979743

Montgomery, D. C., & Woodall, W. H. (1997). A Discussion on Statistically-Based Process Monitoring and Control. Journal of Quality Technology, 29(2), 121-121. doi:10.1080/00224065.1997.11979738

Nelson, P. R. C., Taylor, P. A., & MacGregor, J. F. (1996). Missing data methods in PCA and PLS: Score calculations with incomplete observations. Chemometrics and Intelligent Laboratory Systems, 35(1), 45-65. doi:10.1016/s0169-7439(96)00007-x

Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888

Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002

Prats-Montalbán, J. M., Ferrer, A., Malo, J. L., & Gorbeña, J. (2006). A comparison of different discriminant analysis techniques in a steel industry welding process. Chemometrics and Intelligent Laboratory Systems, 80(1), 109-119. doi:10.1016/j.chemolab.2005.08.005

Prats-Montalbán, J. M., & Ferrer, A. (2007). Integration of colour and textural information in multivariate image analysis: defect detection and classification issues. Journal of Chemometrics, 21(1-2), 10-23. doi:10.1002/cem.1026

Bisgaard, S., Doganaksoy, N., Fisher, N., Gunter, B., Hahn, G., Keller-McNulty, S., … Wu, C. F. J. (2008). The Future of Industrial Statistics: A Panel Discussion. Technometrics, 50(2), 103-127. doi:10.1198/004017008000000136

Stoumbos, Z. G., Reynolds, M. R., Ryan, T. P., & Woodall, W. H. (2000). The State of Statistical Process Control as We Proceed into the 21st Century. Journal of the American Statistical Association, 95(451), 992-998. doi:10.1080/01621459.2000.10474292

Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate Control Charts for Individual Observations. Journal of Quality Technology, 24(2), 88-95. doi:10.1080/00224065.1992.12015232

Wierda, S. J. (1994). Multivariate statistical process control—recent results and directions for future research. Statistica Neerlandica, 48(2), 147-168. doi:10.1111/j.1467-9574.1994.tb01439.x

Wold, S. (1978). Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics, 20(4), 397-405. doi:10.1080/00401706.1978.10489693

Woodall, W. H. (2000). Controversies and Contradictions in Statistical Process Control. Journal of Quality Technology, 32(4), 341-350. doi:10.1080/00224065.2000.11980013

Woodall, W. H., & Montgomery, D. C. (1999). Research Issues and Ideas in Statistical Process Control. Journal of Quality Technology, 31(4), 376-386. doi:10.1080/00224065.1999.11979944

Yu, H., & MacGregor, J. F. (2003). Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemometrics and Intelligent Laboratory Systems, 67(2), 125-144. doi:10.1016/s0169-7439(03)00065-0

Yu, H., MacGregor, J. F., Haarsma, G., & Bourg, W. (2003). Digital Imaging for Online Monitoring and Control of Industrial Snack Food Processes. Industrial & Engineering Chemistry Research, 42(13), 3036-3044. doi:10.1021/ie020941f

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem