- -

Retarded photooxidation of cyamemazine in biomimetic microenvironments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Retarded photooxidation of cyamemazine in biomimetic microenvironments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Limones Herrero, Daniel es_ES
dc.contributor.author Pérez Ruiz, Raúl es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.date.accessioned 2016-02-11T13:00:30Z
dc.date.available 2016-02-11T13:00:30Z
dc.date.issued 2014-10
dc.identifier.issn 0031-8655
dc.identifier.uri http://hdl.handle.net/10251/60806
dc.description.abstract Cyamemazine (CMZ) is a neuroleptic drug that mediates cutaneous phototoxicity in humans. Here, the photobehavior of CMZ has been examined within (1)-acid glycoproteins, - and -cyclodextrins and SDS micelles. In all these microenvironments, CMZ emission was enhanced and blue-shifted, and its lifetime was longer. Irradiation of the entrapped drug at 355nm, under air; led to the N,S-dioxide. Within glycoproteins or SDS micelles the reaction was clearly slower than in phosphate buffered solution (PBS); protection by cyclodextrins was less marked. Transient absorption spectroscopy in PBS revealed formation of the triplet state ((3)CMZ*) and the radical cation (CMZ(+center dot)). Upon addition of glycoprotein, the contribution of CMZ(+center dot) became negligible, whereas (3)CMZ* dominated the spectra; in addition, the triplet lifetime became considerably longer. In cyclodextrins, this occurred to a lower extent. In all microheterogeneous systems, quenching by oxygen was slower than in solution; this was most remarkable inside glycoproteins. The highest protection from photooxidation was achieved inside SDS micelles. The results are consistent with photooxidation of CMZ through photoionization and subsequent trapping of the resulting radical cation by oxygen. This reaction is extremely sensitive to the medium and constitutes an appropriate probe for localization of the drug within a variety of biological compartments. es_ES
dc.description.sponsorship Financial support from the Spanish Government (CTQ2010-14882, BES-2011-043706, JCI-2010-06204) and from the Generalitat Valenciana (PROMETEOII/2013/005) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Photochemistry and Photobiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 3 PHENOTHIAZINE-DERIVATIVES es_ES
dc.subject LASER FLASH-PHOTOLYSIS es_ES
dc.subject ALPHA-1-ACID GLYCOPROTEIN es_ES
dc.subject ALPHA(1)-ACID GLYCOPROTEIN es_ES
dc.subject NEUROLEPTICS es_ES
dc.subject DRUGS es_ES
dc.subject CHLORPROMAZINE es_ES
dc.subject CYCLODEXTRIN es_ES
dc.subject FLUORESCENCE es_ES
dc.subject MECHANISMS es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Retarded photooxidation of cyamemazine in biomimetic microenvironments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/php.12303 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-14882/ES/DIADAS FOTOACTIVAS COMO SONDAS PARA LA GENERACION DE ESPECIES TRANSITORIAS EN SISTEMAS MICROHETEROGENEOS DE TIPO BIOMIMETICO/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JCI-2010-06204/ES/JCI-2010-06204/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-043706/ES/BES-2011-043706/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Limones Herrero, D.; Pérez Ruiz, R.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2014). Retarded photooxidation of cyamemazine in biomimetic microenvironments. Photochemistry and Photobiology. 90(5):1012-1016. https://doi.org/10.1111/php.12303 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/php.12303 es_ES
dc.description.upvformatpinicio 1012 es_ES
dc.description.upvformatpfin 1016 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 269625 es_ES
dc.identifier.eissn 1751-1097
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Feinberg, A. P., & Snyder, S. H. (1975). Phenothiazine drugs: structure-activity relationships explained by a conformation that mimics dopamine. Proceedings of the National Academy of Sciences, 72(5), 1899-1903. doi:10.1073/pnas.72.5.1899 es_ES
dc.description.references Jaszczyszyn, A., Gąsiorowski, K., Świątek, P., Malinka, W., Cieślik-Boczula, K., Petrus, J., & Czarnik-Matusewicz, B. (2012). Chemical structure of phenothiazines and their biological activity. Pharmacological Reports, 64(1), 16-23. doi:10.1016/s1734-1140(12)70726-0 es_ES
dc.description.references Domínguez, J. N., López, S., Charris, J., Iarruso, L., Lobo, G., Semenov, A., … Rosenthal, P. J. (1997). Synthesis and Antimalarial Effects of Phenothiazine Inhibitors of aPlasmodium falciparumCysteine Protease. Journal of Medicinal Chemistry, 40(17), 2726-2732. doi:10.1021/jm970266p es_ES
dc.description.references Aaron, J. J., Gaye Seye, M. D., Trajkovska, S., & Motohashi, N. (2008). Bioactive Phenothiazines and Benzo[a]phenothiazines: Spectroscopic Studies, and Biological and Biomedical Properties and Applications. Bioactive Heterocycles VII, 153-231. doi:10.1007/7081_2008_125 es_ES
dc.description.references White, N. D., & Lenz, T. L. (2013). Drug-Induced Photosensitivity and the Major Culprits. American Journal of Lifestyle Medicine, 7(3), 189-191. doi:10.1177/1559827613475575 es_ES
dc.description.references Onoue, S., Kato, M., Inoue, R., Seto, Y., & Yamada, S. (2013). Photosafety Screening of Phenothiazine Derivatives With Combined Use of Photochemical and Cassette-Dosing Pharmacokinetic Data. Toxicological Sciences, 137(2), 469-477. doi:10.1093/toxsci/kft260 es_ES
dc.description.references Albini , A. E. Fasani B. D. Glass M. E. Brown P. M. Drummond 1998 Photoreactivity versus activity of a selected class of phenothiazines: A comparative study Drugs, Photochemistry and Photostability A. Albini and E. Fasani 134 149 Royal Society of Chemistry Cambridge es_ES
dc.description.references Elisei, F., Latterini, L., Gaetano Aloisi, G., Mazzucato, U., Viola, G., Miolo, G., … Dall’Acqua, F. (2002). Excited-state Properties and In Vitro Phototoxicity Studies of Three Phenothiazine Derivatives¶. Photochemistry and Photobiology, 75(1), 11. doi:10.1562/0031-8655(2002)075<0011:espaiv>2.0.co;2 es_ES
dc.description.references García, C., Piñero, L., Oyola, R., & Arce, R. (2009). Photodegradation of 2-chloro Substituted Phenothiazines in Alcohols. Photochemistry and Photobiology, 85(1), 160-170. doi:10.1111/j.1751-1097.2008.00412.x es_ES
dc.description.references Ronzani, F., Trivella, A., Arzoumanian, E., Blanc, S., Sarakha, M., Richard, C., … Lacombe, S. (2013). Comparison of the photophysical properties of three phenothiazine derivatives: transient detection and singlet oxygen production. Photochemical & Photobiological Sciences, 12(12), 2160. doi:10.1039/c3pp50246e es_ES
dc.description.references Fournier, T., Medjoubi-N, N., & Porquet, D. (2000). Alpha-1-acid glycoprotein. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1482(1-2), 157-171. doi:10.1016/s0167-4838(00)00153-9 es_ES
dc.description.references Safaa, E.-G., Wollert, U., & Müller, W. E. (1983). Binding of Several Phenothiazine Neuroleptics to a Common Binding Site of α1-Acid Glycoprotein, Orosomucoid. Journal of Pharmaceutical Sciences, 72(2), 202-205. doi:10.1002/jps.2600720229 es_ES
dc.description.references MIYOSHI, T., SUKIMOTO, K., & OTAGIRI, M. (1992). Investigation of the Interaction Mode of Phenothiazine Neuroleptics with α1-Acid Glycoprotein. Journal of Pharmacy and Pharmacology, 44(1), 28-33. doi:10.1111/j.2042-7158.1992.tb14358.x es_ES
dc.description.references Taheri, S., Cogswell, L. P., Gent, A., & Strichartz, G. R. (2003). Hydrophobic and Ionic Factors in the Binding of Local Anesthetics to the Major Variant of Human α1-Acid Glycoprotein. Journal of Pharmacology and Experimental Therapeutics, 304(1), 71-80. doi:10.1124/jpet.102.042028 es_ES
dc.description.references Schill, G., Wainer, I. W., & Barkan, S. A. (1986). Chiral separations of cationic and anionic drugs on an α1-acid glycoprotein-bonded stationary phase (enantiopac®). Journal of Chromatography A, 365, 73-88. doi:10.1016/s0021-9673(01)81544-2 es_ES
dc.description.references Michishita, T., Franco, P., & Zhang, T. (2010). New approaches of LC-MS compatible method development on α1-acid glycoprotein-based stationary phase for resolution of enantiomers by HPLC. Journal of Separation Science, 33(23-24), 3627-3637. doi:10.1002/jssc.201000627 es_ES
dc.description.references Hermansson, J., & Grahn, A. (1995). Optimization of the separation of enantiomers of basic drugs retention mechanisms and dynamic modification of the chiral bonding properties on a α1-acid glycoprotein column. Journal of Chromatography A, 694(1), 57-69. doi:10.1016/0021-9673(94)00936-4 es_ES
dc.description.references Caetano, W., & Tabak, M. (2000). Interaction of Chlorpromazine and Trifluoperazine with Anionic Sodium Dodecyl Sulfate (SDS) Micelles: Electronic Absorption and Fluorescence Studies. Journal of Colloid and Interface Science, 225(1), 69-81. doi:10.1006/jcis.2000.6720 es_ES
dc.description.references Ghosh, H. N., Sapre, A. V., Palit, D. K., & Mittal, J. P. (1997). Picosecond Flash Photolysis Studies on Phenothiazine in Organic and Micellar Solution. The Journal of Physical Chemistry B, 101(13), 2315-2320. doi:10.1021/jp963028z es_ES
dc.description.references IRIE, T., SUNADA, M., OTAGIRI, M., & UEKAMA, K. (1983). Protective mechanism of .BETA.-cyclodextrin for the hemolysis induced with phenothiazine neuroleptics in vitro. Journal of Pharmacobio-Dynamics, 6(6), 408-414. doi:10.1248/bpb1978.6.408 es_ES
dc.description.references Chankvetadze, B., Kartozia, I., Burjanadze, N., Bergenthal, D., Luftmann, H., & Blaschke, G. (2001). Enantioseperation of chiral phenothiazine derivatives in capillary electrophoresis using cyclodextrin type chiral selectors. Chromatographia, 53(S1), S290-S295. doi:10.1007/bf02490344 es_ES
dc.description.references Conilleau, V., Dompmartin, A., Michel, M., Verneuil, L., & Leroy, D. (2000). Photoscratch testing in systemic drug-induced photosensitivity. Photodermatology, Photoimmunology and Photomedicine, 16(2), 62-66. doi:10.1034/j.1600-0781.2000.d01-5.x es_ES
dc.description.references Morlière, P., Bosca, F., Miranda, M. A., Castell, J. V., & Santus, R. (2004). Primary Photochemical Processes of the Phototoxic Neuroleptic Cyamemazine: A Study by Laser Flash Photolysis and Steady-state Irradiation¶. Photochemistry and Photobiology, 80(3), 535. doi:10.1562/2004-03-15-ra-114.1 es_ES
dc.description.references Morlière, P., Haigle, J., Aissani, K., Filipe, P., Silva, J. N., & Santus, R. (2004). An Insight into the Mechanisms of the Phototoxic Response Induced by Cyamemazine in Cultured Fibroblasts and Keratinocytes¶. Photochemistry and Photobiology, 79(2), 163. doi:10.1562/0031-8655(2004)079<0163:aiitmo>2.0.co;2 es_ES
dc.description.references Garcia, C., Smith, G. A., McGimpsey, W. G., Kochevar, I. E., & Redmond, R. W. (1995). Mechanism and Solvent Dependence for Photoionization of Promazine and Chlorpromazine. Journal of the American Chemical Society, 117(44), 10871-10878. doi:10.1021/ja00149a010 es_ES
dc.description.references Gao, Y., Chen, J., Zhuang, X., Wang, J., Pan, Y., Zhang, L., & Yu, S. (2007). Proton transfer in phenothiazine photochemical oxidation: Laser flash photolysis and fluorescence studies. Chemical Physics, 334(1-3), 224-231. doi:10.1016/j.chemphys.2007.03.006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem