- -

Retarded photooxidation of cyamemazine in biomimetic microenvironments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Retarded photooxidation of cyamemazine in biomimetic microenvironments

Mostrar el registro completo del ítem

Limones Herrero, D.; Pérez Ruiz, R.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2014). Retarded photooxidation of cyamemazine in biomimetic microenvironments. Photochemistry and Photobiology. 90(5):1012-1016. https://doi.org/10.1111/php.12303

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60806

Ficheros en el ítem

Metadatos del ítem

Título: Retarded photooxidation of cyamemazine in biomimetic microenvironments
Autor: Limones Herrero, Daniel Pérez Ruiz, Raúl Jiménez Molero, María Consuelo Miranda Alonso, Miguel Ángel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Cyamemazine (CMZ) is a neuroleptic drug that mediates cutaneous phototoxicity in humans. Here, the photobehavior of CMZ has been examined within (1)-acid glycoproteins, - and -cyclodextrins and SDS micelles. In all these ...[+]
Palabras clave: 3 PHENOTHIAZINE-DERIVATIVES , LASER FLASH-PHOTOLYSIS , ALPHA-1-ACID GLYCOPROTEIN , ALPHA(1)-ACID GLYCOPROTEIN , NEUROLEPTICS , DRUGS , CHLORPROMAZINE , CYCLODEXTRIN , FLUORESCENCE , MECHANISMS
Derechos de uso: Reserva de todos los derechos
Fuente:
Photochemistry and Photobiology. (issn: 0031-8655 ) (eissn: 1751-1097 )
DOI: 10.1111/php.12303
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1111/php.12303
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2010-14882/ES/DIADAS FOTOACTIVAS COMO SONDAS PARA LA GENERACION DE ESPECIES TRANSITORIAS EN SISTEMAS MICROHETEROGENEOS DE TIPO BIOMIMETICO/ /
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/
info:eu-repo/grantAgreement/MICINN//JCI-2010-06204/ES/JCI-2010-06204/
info:eu-repo/grantAgreement/MICINN//BES-2011-043706/ES/BES-2011-043706/
Agradecimientos:
Financial support from the Spanish Government (CTQ2010-14882, BES-2011-043706, JCI-2010-06204) and from the Generalitat Valenciana (PROMETEOII/2013/005) is gratefully acknowledged.
Tipo: Artículo

References

Feinberg, A. P., & Snyder, S. H. (1975). Phenothiazine drugs: structure-activity relationships explained by a conformation that mimics dopamine. Proceedings of the National Academy of Sciences, 72(5), 1899-1903. doi:10.1073/pnas.72.5.1899

Jaszczyszyn, A., Gąsiorowski, K., Świątek, P., Malinka, W., Cieślik-Boczula, K., Petrus, J., & Czarnik-Matusewicz, B. (2012). Chemical structure of phenothiazines and their biological activity. Pharmacological Reports, 64(1), 16-23. doi:10.1016/s1734-1140(12)70726-0

Domínguez, J. N., López, S., Charris, J., Iarruso, L., Lobo, G., Semenov, A., … Rosenthal, P. J. (1997). Synthesis and Antimalarial Effects of Phenothiazine Inhibitors of aPlasmodium falciparumCysteine Protease. Journal of Medicinal Chemistry, 40(17), 2726-2732. doi:10.1021/jm970266p [+]
Feinberg, A. P., & Snyder, S. H. (1975). Phenothiazine drugs: structure-activity relationships explained by a conformation that mimics dopamine. Proceedings of the National Academy of Sciences, 72(5), 1899-1903. doi:10.1073/pnas.72.5.1899

Jaszczyszyn, A., Gąsiorowski, K., Świątek, P., Malinka, W., Cieślik-Boczula, K., Petrus, J., & Czarnik-Matusewicz, B. (2012). Chemical structure of phenothiazines and their biological activity. Pharmacological Reports, 64(1), 16-23. doi:10.1016/s1734-1140(12)70726-0

Domínguez, J. N., López, S., Charris, J., Iarruso, L., Lobo, G., Semenov, A., … Rosenthal, P. J. (1997). Synthesis and Antimalarial Effects of Phenothiazine Inhibitors of aPlasmodium falciparumCysteine Protease. Journal of Medicinal Chemistry, 40(17), 2726-2732. doi:10.1021/jm970266p

Aaron, J. J., Gaye Seye, M. D., Trajkovska, S., & Motohashi, N. (2008). Bioactive Phenothiazines and Benzo[a]phenothiazines: Spectroscopic Studies, and Biological and Biomedical Properties and Applications. Bioactive Heterocycles VII, 153-231. doi:10.1007/7081_2008_125

White, N. D., & Lenz, T. L. (2013). Drug-Induced Photosensitivity and the Major Culprits. American Journal of Lifestyle Medicine, 7(3), 189-191. doi:10.1177/1559827613475575

Onoue, S., Kato, M., Inoue, R., Seto, Y., & Yamada, S. (2013). Photosafety Screening of Phenothiazine Derivatives With Combined Use of Photochemical and Cassette-Dosing Pharmacokinetic Data. Toxicological Sciences, 137(2), 469-477. doi:10.1093/toxsci/kft260

Albini , A. E. Fasani B. D. Glass M. E. Brown P. M. Drummond 1998 Photoreactivity versus activity of a selected class of phenothiazines: A comparative study Drugs, Photochemistry and Photostability A. Albini and E. Fasani 134 149 Royal Society of Chemistry Cambridge

Elisei, F., Latterini, L., Gaetano Aloisi, G., Mazzucato, U., Viola, G., Miolo, G., … Dall’Acqua, F. (2002). Excited-state Properties and In Vitro Phototoxicity Studies of Three Phenothiazine Derivatives¶. Photochemistry and Photobiology, 75(1), 11. doi:10.1562/0031-8655(2002)075<0011:espaiv>2.0.co;2

García, C., Piñero, L., Oyola, R., & Arce, R. (2009). Photodegradation of 2-chloro Substituted Phenothiazines in Alcohols. Photochemistry and Photobiology, 85(1), 160-170. doi:10.1111/j.1751-1097.2008.00412.x

Ronzani, F., Trivella, A., Arzoumanian, E., Blanc, S., Sarakha, M., Richard, C., … Lacombe, S. (2013). Comparison of the photophysical properties of three phenothiazine derivatives: transient detection and singlet oxygen production. Photochemical & Photobiological Sciences, 12(12), 2160. doi:10.1039/c3pp50246e

Fournier, T., Medjoubi-N, N., & Porquet, D. (2000). Alpha-1-acid glycoprotein. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1482(1-2), 157-171. doi:10.1016/s0167-4838(00)00153-9

Safaa, E.-G., Wollert, U., & Müller, W. E. (1983). Binding of Several Phenothiazine Neuroleptics to a Common Binding Site of α1-Acid Glycoprotein, Orosomucoid. Journal of Pharmaceutical Sciences, 72(2), 202-205. doi:10.1002/jps.2600720229

MIYOSHI, T., SUKIMOTO, K., & OTAGIRI, M. (1992). Investigation of the Interaction Mode of Phenothiazine Neuroleptics with α1-Acid Glycoprotein. Journal of Pharmacy and Pharmacology, 44(1), 28-33. doi:10.1111/j.2042-7158.1992.tb14358.x

Taheri, S., Cogswell, L. P., Gent, A., & Strichartz, G. R. (2003). Hydrophobic and Ionic Factors in the Binding of Local Anesthetics to the Major Variant of Human α1-Acid Glycoprotein. Journal of Pharmacology and Experimental Therapeutics, 304(1), 71-80. doi:10.1124/jpet.102.042028

Schill, G., Wainer, I. W., & Barkan, S. A. (1986). Chiral separations of cationic and anionic drugs on an α1-acid glycoprotein-bonded stationary phase (enantiopac®). Journal of Chromatography A, 365, 73-88. doi:10.1016/s0021-9673(01)81544-2

Michishita, T., Franco, P., & Zhang, T. (2010). New approaches of LC-MS compatible method development on α1-acid glycoprotein-based stationary phase for resolution of enantiomers by HPLC. Journal of Separation Science, 33(23-24), 3627-3637. doi:10.1002/jssc.201000627

Hermansson, J., & Grahn, A. (1995). Optimization of the separation of enantiomers of basic drugs retention mechanisms and dynamic modification of the chiral bonding properties on a α1-acid glycoprotein column. Journal of Chromatography A, 694(1), 57-69. doi:10.1016/0021-9673(94)00936-4

Caetano, W., & Tabak, M. (2000). Interaction of Chlorpromazine and Trifluoperazine with Anionic Sodium Dodecyl Sulfate (SDS) Micelles: Electronic Absorption and Fluorescence Studies. Journal of Colloid and Interface Science, 225(1), 69-81. doi:10.1006/jcis.2000.6720

Ghosh, H. N., Sapre, A. V., Palit, D. K., & Mittal, J. P. (1997). Picosecond Flash Photolysis Studies on Phenothiazine in Organic and Micellar Solution. The Journal of Physical Chemistry B, 101(13), 2315-2320. doi:10.1021/jp963028z

IRIE, T., SUNADA, M., OTAGIRI, M., & UEKAMA, K. (1983). Protective mechanism of .BETA.-cyclodextrin for the hemolysis induced with phenothiazine neuroleptics in vitro. Journal of Pharmacobio-Dynamics, 6(6), 408-414. doi:10.1248/bpb1978.6.408

Chankvetadze, B., Kartozia, I., Burjanadze, N., Bergenthal, D., Luftmann, H., & Blaschke, G. (2001). Enantioseperation of chiral phenothiazine derivatives in capillary electrophoresis using cyclodextrin type chiral selectors. Chromatographia, 53(S1), S290-S295. doi:10.1007/bf02490344

Conilleau, V., Dompmartin, A., Michel, M., Verneuil, L., & Leroy, D. (2000). Photoscratch testing in systemic drug-induced photosensitivity. Photodermatology, Photoimmunology and Photomedicine, 16(2), 62-66. doi:10.1034/j.1600-0781.2000.d01-5.x

Morlière, P., Bosca, F., Miranda, M. A., Castell, J. V., & Santus, R. (2004). Primary Photochemical Processes of the Phototoxic Neuroleptic Cyamemazine: A Study by Laser Flash Photolysis and Steady-state Irradiation¶. Photochemistry and Photobiology, 80(3), 535. doi:10.1562/2004-03-15-ra-114.1

Morlière, P., Haigle, J., Aissani, K., Filipe, P., Silva, J. N., & Santus, R. (2004). An Insight into the Mechanisms of the Phototoxic Response Induced by Cyamemazine in Cultured Fibroblasts and Keratinocytes¶. Photochemistry and Photobiology, 79(2), 163. doi:10.1562/0031-8655(2004)079<0163:aiitmo>2.0.co;2

Garcia, C., Smith, G. A., McGimpsey, W. G., Kochevar, I. E., & Redmond, R. W. (1995). Mechanism and Solvent Dependence for Photoionization of Promazine and Chlorpromazine. Journal of the American Chemical Society, 117(44), 10871-10878. doi:10.1021/ja00149a010

Gao, Y., Chen, J., Zhuang, X., Wang, J., Pan, Y., Zhang, L., & Yu, S. (2007). Proton transfer in phenothiazine photochemical oxidation: Laser flash photolysis and fluorescence studies. Chemical Physics, 334(1-3), 224-231. doi:10.1016/j.chemphys.2007.03.006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem