Kourti, T. (2009). Multivariate Statistical Process Control and Process Control, Using Latent Variables. Comprehensive Chemometrics, 21-54. doi:10.1016/b978-044452701-1.00013-2
Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3
Kourti, T. (2003). Abnormal situation detection, three-way data and projection methods; robust data archiving and modeling for industrial applications. Annual Reviews in Control, 27(2), 131-139. doi:10.1016/j.arcontrol.2003.10.004
[+]
Kourti, T. (2009). Multivariate Statistical Process Control and Process Control, Using Latent Variables. Comprehensive Chemometrics, 21-54. doi:10.1016/b978-044452701-1.00013-2
Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3
Kourti, T. (2003). Abnormal situation detection, three-way data and projection methods; robust data archiving and modeling for industrial applications. Annual Reviews in Control, 27(2), 131-139. doi:10.1016/j.arcontrol.2003.10.004
Lakshminarayanan S Gudi R Shah S Monitoring batch processes using multivariate statistical tools: extensions and practical issues. 1996 241 246
Zarzo, M., & Ferrer, A. (2004). Batch process diagnosis: PLS with variable selection versus block-wise PCR. Chemometrics and Intelligent Laboratory Systems, 73(1), 15-27. doi:10.1016/j.chemolab.2003.11.009
Louwerse, D. J., & Smilde, A. K. (2000). Multivariate statistical process control of batch processes based on three-way models. Chemical Engineering Science, 55(7), 1225-1235. doi:10.1016/s0009-2509(99)00408-x
Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1999). Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 13(3-4), 397-413. doi:10.1002/(sici)1099-128x(199905/08)13:3/4<397::aid-cem559>3.0.co;2-i
Nomikos, P., & MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375. doi:10.1002/aic.690400809
Ündey, C., Ertunç, S., & Çınar, A. (2003). Online Batch/Fed-Batch Process Performance Monitoring, Quality Prediction, and Variable-Contribution Analysis for Diagnosis. Industrial & Engineering Chemistry Research, 42(20), 4645-4658. doi:10.1021/ie0208218
Neogi, D., & Schlags, C. E. (1998). Multivariate Statistical Analysis of an Emulsion Batch Process. Industrial & Engineering Chemistry Research, 37(10), 3971-3979. doi:10.1021/ie980243o
Kourti, T., Lee, J., & Macgregor, J. F. (1996). Experiences with industrial applications of projection methods for multivariate statistical process control. Computers & Chemical Engineering, 20, S745-S750. doi:10.1016/0098-1354(96)00132-9
Duchesne, C., Kourti, T., & MacGregor, J. F. (2002). Multivariate SPC for startups and grade transitions. AIChE Journal, 48(12), 2890-2901. doi:10.1002/aic.690481216
Zhang, Y., Dudzic, M., & Vaculik, V. (2003). Integrated monitoring solution to start-up and run-time operations for continuous casting. Annual Reviews in Control, 27(2), 141-149. doi:10.1016/j.arcontrol.2003.10.002
Rothwell SG Martin EB Morris AJ Comparison of methods for handling unequal length batches 1998 66 71
García-Muñoz, S., Kourti, T., MacGregor, J. F., Mateos, A. G., & Murphy, G. (2003). Troubleshooting of an Industrial Batch Process Using Multivariate Methods. Industrial & Engineering Chemistry Research, 42(15), 3592-3601. doi:10.1021/ie0300023
Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 331-340. doi:10.1016/s0169-7439(98)00162-2
Kaistha, N., & Moore, C. F. (2001). Extraction of Event Times in Batch Profiles for Time Synchronization and Quality Predictions. Industrial & Engineering Chemistry Research, 40(1), 252-260. doi:10.1021/ie990937c
Ramsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7
Statistical monitoring of multistage, multiphase batch processes. (2002). IEEE Control Systems, 22(5), 40-52. doi:10.1109/mcs.2002.1035216
Andersen, S. W., & Runger, G. C. (2012). Automated feature extraction from profiles with application to a batch fermentation process. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(2), 327-344. doi:10.1111/j.1467-9876.2011.01032.x
Srinivasan, R., & Qian, M. S. (2005). Off-line Temporal Signal Comparison Using Singular Points Augmented Time Warping. Industrial & Engineering Chemistry Research, 44(13), 4697-4716. doi:10.1021/ie049528t
Srinivasan, R., & Sheng Qian, M. (2006). Online fault diagnosis and state identification during process transitions using dynamic locus analysis. Chemical Engineering Science, 61(18), 6109-6132. doi:10.1016/j.ces.2006.05.037
Srinivasan, R., & Qian, M. (2007). Online Temporal Signal Comparison Using Singular Points Augmented Time Warping. Industrial & Engineering Chemistry Research, 46(13), 4531-4548. doi:10.1021/ie060111s
Chen, J., & Liu, J. (2000). Post analysis on different operating time processes using orthonormal function approximation and multiway principal component analysis. Journal of Process Control, 10(5), 411-418. doi:10.1016/s0959-1524(00)00016-0
Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43-49. doi:10.1109/tassp.1978.1163055
Nielsen, N.-P. V., Carstensen, J. M., & Smedsgaard, J. (1998). Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. Journal of Chromatography A, 805(1-2), 17-35. doi:10.1016/s0021-9673(98)00021-1
Pravdova, V., Walczak, B., & Massart, D. L. (2002). A comparison of two algorithms for warping of analytical signals. Analytica Chimica Acta, 456(1), 77-92. doi:10.1016/s0003-2670(02)00008-9
Tomasi, G., van den Berg, F., & Andersson, C. (2004). Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 18(5), 231-241. doi:10.1002/cem.859
Kassidas, A., MacGregor, J. F., & Taylor, P. A. (1998). Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 44(4), 864-875. doi:10.1002/aic.690440412
Gollmer, K., & Posten, C. (1996). Supervision of bioprocesses using a dynamic time warping algorithm. Control Engineering Practice, 4(9), 1287-1295. doi:10.1016/0967-0661(96)00136-0
Ramaker, H.-J., van Sprang, E. N. M., Westerhuis, J. A., & Smilde, A. K. (2003). Dynamic time warping of spectroscopic BATCH data. Analytica Chimica Acta, 498(1-2), 133-153. doi:10.1016/j.aca.2003.08.045
Fransson, M., & Folestad, S. (2006). Real-time alignment of batch process data using COW for on-line process monitoring. Chemometrics and Intelligent Laboratory Systems, 84(1-2), 56-61. doi:10.1016/j.chemolab.2006.04.020
González-Martínez, J. M., Ferrer, A., & Westerhuis, J. A. (2011). Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping. Chemometrics and Intelligent Laboratory Systems, 105(2), 195-206. doi:10.1016/j.chemolab.2011.01.003
Gins, G., Van den Kerkhof, P., & Van Impe, J. F. M. (2012). Hybrid Derivative Dynamic Time Warping for Online Industrial Batch-End Quality Estimation. Industrial & Engineering Chemistry Research, 51(17), 6071-6084. doi:10.1021/ie2019068
Zhang Y Edgar TF A robust dynamic time warping algorithm for batch trajectory synchronization 2008 2864 2869
González-Martínez, J. M., Westerhuis, J. A., & Ferrer, A. (2013). Using warping information for batch process monitoring and fault classification. Chemometrics and Intelligent Laboratory Systems, 127, 210-217. doi:10.1016/j.chemolab.2013.07.003
Kourti, T. (2003). Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 17(1), 93-109. doi:10.1002/cem.778
González-Martínez, J. M., Camacho, J., & Ferrer, A. (2013). Bilinear modeling of batch processes. Part III: parameter stability. Journal of Chemometrics, 28(1), 10-27. doi:10.1002/cem.2562
Camacho, J., & Ferrer, A. (2014). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects. Chemometrics and Intelligent Laboratory Systems, 131, 37-50. doi:10.1016/j.chemolab.2013.12.003
Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750
Lei, F., Rotbøll, M., & Jørgensen, S. B. (2001). A biochemically structured model for Saccharomyces cerevisiae. Journal of Biotechnology, 88(3), 205-221. doi:10.1016/s0168-1656(01)00269-3
Camacho J González-Martínez JM Ferrer A Multi-phase (MP) toolbox 2013 http://mseg.webs.upv.es/Software.html
UMETRICS SIMCA 13.0.3 Umea, Sweden 2013 info@umetrics.com www.umetrics.com
González-Martínez, J. M., Vitale, R., de Noord, O. E., & Ferrer, A. (2014). Effect of Synchronization on Bilinear Batch Process Modeling. Industrial & Engineering Chemistry Research, 53(11), 4339-4351. doi:10.1021/ie402052v
[-]