- -

Multi-synchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-synchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Martínez, José María es_ES
dc.contributor.author de Noord, Onno es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2016-02-11T13:14:43Z
dc.date.available 2016-02-11T13:14:43Z
dc.date.issued 2014-05
dc.identifier.issn 0886-9383
dc.identifier.uri http://hdl.handle.net/10251/60808
dc.description.abstract Batch synchronization has been widely misunderstood as being only needed when variable trajectories have uneven length. Batch data are actually considered not synchronized when the key process events do not occur at the same point of process evolution, irrespective of whether the batch duration is the same for all batches or not. Additionally, a single synchronization procedure is usually applied to all batches without taking into account the nature of asynchronism of each batch, and the presence of abnormalities. This strategy may distort the original trajectories and decrease the signal-to-noise ratio, affecting the subsequent multivariate analyses. The approach proposed in this paper, named multisynchro, overcomes these pitfalls in scenarios of multiple asynchronisms. The different types of asynchronisms are effectively detected by using the warping information derived from synchronization. Each set of batch trajectories is synchronized by appropriate synchronization procedures, which are automatically selected based on the nature of asynchronisms present in data. The novel approach also includes a procedure that performs abnormality detection and batch synchronization in an iterative manner. Data from realistic simulations of a fermentation process of the Saccharomyces cerevisiae cultivation are used to illustrate the performance of the proposed approach in a context of multiple asynchronisms. es_ES
dc.description.sponsorship This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02. Part of this research work was carried out during an internship of the corresponding author at Shell Global Solutions International B.V. (Amsterdam, The Netherlands). The authors also thank the anonymous referees for their comments, which greatly helped to improve the text. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Chemometrics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Batch synchronization es_ES
dc.subject Warping information es_ES
dc.subject Asynchronism es_ES
dc.subject Dynamic time warping es_ES
dc.subject Relaxed greedy time warping es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Multi-synchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cem.2620
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation González Martínez, JM.; De Noord, O.; Ferrer, A. (2014). Multi-synchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms. Journal of Chemometrics. 28(5):462-475. https://doi.org/10.1002/cem.2620 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cem.2620 es_ES
dc.description.upvformatpinicio 462 es_ES
dc.description.upvformatpfin 475 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 282482 es_ES
dc.identifier.eissn 1099-128X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Kourti, T. (2009). Multivariate Statistical Process Control and Process Control, Using Latent Variables. Comprehensive Chemometrics, 21-54. doi:10.1016/b978-044452701-1.00013-2 es_ES
dc.description.references Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3 es_ES
dc.description.references Kourti, T. (2003). Abnormal situation detection, three-way data and projection methods; robust data archiving and modeling for industrial applications. Annual Reviews in Control, 27(2), 131-139. doi:10.1016/j.arcontrol.2003.10.004 es_ES
dc.description.references Lakshminarayanan S Gudi R Shah S Monitoring batch processes using multivariate statistical tools: extensions and practical issues. 1996 241 246 es_ES
dc.description.references Zarzo, M., & Ferrer, A. (2004). Batch process diagnosis: PLS with variable selection versus block-wise PCR. Chemometrics and Intelligent Laboratory Systems, 73(1), 15-27. doi:10.1016/j.chemolab.2003.11.009 es_ES
dc.description.references Louwerse, D. J., & Smilde, A. K. (2000). Multivariate statistical process control of batch processes based on three-way models. Chemical Engineering Science, 55(7), 1225-1235. doi:10.1016/s0009-2509(99)00408-x es_ES
dc.description.references Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1999). Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 13(3-4), 397-413. doi:10.1002/(sici)1099-128x(199905/08)13:3/4<397::aid-cem559>3.0.co;2-i es_ES
dc.description.references Nomikos, P., & MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375. doi:10.1002/aic.690400809 es_ES
dc.description.references Ündey, C., Ertunç, S., & Çınar, A. (2003). Online Batch/Fed-Batch Process Performance Monitoring, Quality Prediction, and Variable-Contribution Analysis for Diagnosis. Industrial & Engineering Chemistry Research, 42(20), 4645-4658. doi:10.1021/ie0208218 es_ES
dc.description.references Neogi, D., & Schlags, C. E. (1998). Multivariate Statistical Analysis of an Emulsion Batch Process. Industrial & Engineering Chemistry Research, 37(10), 3971-3979. doi:10.1021/ie980243o es_ES
dc.description.references Kourti, T., Lee, J., & Macgregor, J. F. (1996). Experiences with industrial applications of projection methods for multivariate statistical process control. Computers & Chemical Engineering, 20, S745-S750. doi:10.1016/0098-1354(96)00132-9 es_ES
dc.description.references Duchesne, C., Kourti, T., & MacGregor, J. F. (2002). Multivariate SPC for startups and grade transitions. AIChE Journal, 48(12), 2890-2901. doi:10.1002/aic.690481216 es_ES
dc.description.references Zhang, Y., Dudzic, M., & Vaculik, V. (2003). Integrated monitoring solution to start-up and run-time operations for continuous casting. Annual Reviews in Control, 27(2), 141-149. doi:10.1016/j.arcontrol.2003.10.002 es_ES
dc.description.references Rothwell SG Martin EB Morris AJ Comparison of methods for handling unequal length batches 1998 66 71 es_ES
dc.description.references García-Muñoz, S., Kourti, T., MacGregor, J. F., Mateos, A. G., & Murphy, G. (2003). Troubleshooting of an Industrial Batch Process Using Multivariate Methods. Industrial & Engineering Chemistry Research, 42(15), 3592-3601. doi:10.1021/ie0300023 es_ES
dc.description.references Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 331-340. doi:10.1016/s0169-7439(98)00162-2 es_ES
dc.description.references Kaistha, N., & Moore, C. F. (2001). Extraction of Event Times in Batch Profiles for Time Synchronization and Quality Predictions. Industrial & Engineering Chemistry Research, 40(1), 252-260. doi:10.1021/ie990937c es_ES
dc.description.references Ramsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7 es_ES
dc.description.references Statistical monitoring of multistage, multiphase batch processes. (2002). IEEE Control Systems, 22(5), 40-52. doi:10.1109/mcs.2002.1035216 es_ES
dc.description.references Andersen, S. W., & Runger, G. C. (2012). Automated feature extraction from profiles with application to a batch fermentation process. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(2), 327-344. doi:10.1111/j.1467-9876.2011.01032.x es_ES
dc.description.references Srinivasan, R., & Qian, M. S. (2005). Off-line Temporal Signal Comparison Using Singular Points Augmented Time Warping. Industrial & Engineering Chemistry Research, 44(13), 4697-4716. doi:10.1021/ie049528t es_ES
dc.description.references Srinivasan, R., & Sheng Qian, M. (2006). Online fault diagnosis and state identification during process transitions using dynamic locus analysis. Chemical Engineering Science, 61(18), 6109-6132. doi:10.1016/j.ces.2006.05.037 es_ES
dc.description.references Srinivasan, R., & Qian, M. (2007). Online Temporal Signal Comparison Using Singular Points Augmented Time Warping. Industrial & Engineering Chemistry Research, 46(13), 4531-4548. doi:10.1021/ie060111s es_ES
dc.description.references Chen, J., & Liu, J. (2000). Post analysis on different operating time processes using orthonormal function approximation and multiway principal component analysis. Journal of Process Control, 10(5), 411-418. doi:10.1016/s0959-1524(00)00016-0 es_ES
dc.description.references Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43-49. doi:10.1109/tassp.1978.1163055 es_ES
dc.description.references Nielsen, N.-P. V., Carstensen, J. M., & Smedsgaard, J. (1998). Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. Journal of Chromatography A, 805(1-2), 17-35. doi:10.1016/s0021-9673(98)00021-1 es_ES
dc.description.references Pravdova, V., Walczak, B., & Massart, D. L. (2002). A comparison of two algorithms for warping of analytical signals. Analytica Chimica Acta, 456(1), 77-92. doi:10.1016/s0003-2670(02)00008-9 es_ES
dc.description.references Tomasi, G., van den Berg, F., & Andersson, C. (2004). Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 18(5), 231-241. doi:10.1002/cem.859 es_ES
dc.description.references Kassidas, A., MacGregor, J. F., & Taylor, P. A. (1998). Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 44(4), 864-875. doi:10.1002/aic.690440412 es_ES
dc.description.references Gollmer, K., & Posten, C. (1996). Supervision of bioprocesses using a dynamic time warping algorithm. Control Engineering Practice, 4(9), 1287-1295. doi:10.1016/0967-0661(96)00136-0 es_ES
dc.description.references Ramaker, H.-J., van Sprang, E. N. M., Westerhuis, J. A., & Smilde, A. K. (2003). Dynamic time warping of spectroscopic BATCH data. Analytica Chimica Acta, 498(1-2), 133-153. doi:10.1016/j.aca.2003.08.045 es_ES
dc.description.references Fransson, M., & Folestad, S. (2006). Real-time alignment of batch process data using COW for on-line process monitoring. Chemometrics and Intelligent Laboratory Systems, 84(1-2), 56-61. doi:10.1016/j.chemolab.2006.04.020 es_ES
dc.description.references González-Martínez, J. M., Ferrer, A., & Westerhuis, J. A. (2011). Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping. Chemometrics and Intelligent Laboratory Systems, 105(2), 195-206. doi:10.1016/j.chemolab.2011.01.003 es_ES
dc.description.references Gins, G., Van den Kerkhof, P., & Van Impe, J. F. M. (2012). Hybrid Derivative Dynamic Time Warping for Online Industrial Batch-End Quality Estimation. Industrial & Engineering Chemistry Research, 51(17), 6071-6084. doi:10.1021/ie2019068 es_ES
dc.description.references Zhang Y Edgar TF A robust dynamic time warping algorithm for batch trajectory synchronization 2008 2864 2869 es_ES
dc.description.references González-Martínez, J. M., Westerhuis, J. A., & Ferrer, A. (2013). Using warping information for batch process monitoring and fault classification. Chemometrics and Intelligent Laboratory Systems, 127, 210-217. doi:10.1016/j.chemolab.2013.07.003 es_ES
dc.description.references Kourti, T. (2003). Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 17(1), 93-109. doi:10.1002/cem.778 es_ES
dc.description.references González-Martínez, J. M., Camacho, J., & Ferrer, A. (2013). Bilinear modeling of batch processes. Part III: parameter stability. Journal of Chemometrics, 28(1), 10-27. doi:10.1002/cem.2562 es_ES
dc.description.references Camacho, J., & Ferrer, A. (2014). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects. Chemometrics and Intelligent Laboratory Systems, 131, 37-50. doi:10.1016/j.chemolab.2013.12.003 es_ES
dc.description.references Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750 es_ES
dc.description.references Lei, F., Rotbøll, M., & Jørgensen, S. B. (2001). A biochemically structured model for Saccharomyces cerevisiae. Journal of Biotechnology, 88(3), 205-221. doi:10.1016/s0168-1656(01)00269-3 es_ES
dc.description.references Camacho J González-Martínez JM Ferrer A Multi-phase (MP) toolbox 2013 http://mseg.webs.upv.es/Software.html es_ES
dc.description.references UMETRICS SIMCA 13.0.3 Umea, Sweden 2013 info@umetrics.com www.umetrics.com es_ES
dc.description.references González-Martínez, J. M., Vitale, R., de Noord, O. E., & Ferrer, A. (2014). Effect of Synchronization on Bilinear Batch Process Modeling. Industrial & Engineering Chemistry Research, 53(11), 4339-4351. doi:10.1021/ie402052v es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem