Mostrar el registro sencillo del ítem
dc.contributor.author | González Martínez, José María | es_ES |
dc.contributor.author | Camacho Páez, José | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2016-02-11T13:24:13Z | |
dc.date.available | 2016-02-11T13:24:13Z | |
dc.date.issued | 2014-01 | |
dc.identifier.issn | 0886-9383 | |
dc.identifier.uri | http://hdl.handle.net/10251/60810 | |
dc.description.abstract | A paramount aspect in the development of a model for a monitoring system is the so-called parameter stability. This is inversely related to the uncertainty, i.e., the variance in the parameters estimates. Noise affects the performance of the monitoring system, reducing its fault detection capability. Low parameters uncertainty is desired to ensure a reduced amount of noise in the model. Nonetheless, there is no sound study on the parameter stability in batch multivariate statistical process control (BMSPC). The aim of this paper is to investigate the parameter stability associated to the most used synchronization and principal component analysis-based BMSPC methods. The synchronization methods included in this study are the following: indicator variable, dynamic time warping, relaxed greedy time warping, and time linear expanding/compressing-based. In addition, different arrangements of the three-way batch data into two-way matrices are considered, namely single-model, K-models, and hierarchicalmodel approaches. Results are discussed in connection with previous conclusions in the first two papers of the series. | es_ES |
dc.description.sponsorship | This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02. Authors also acknowledge the anonymous reviewers for their comments to improve the article. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of Chemometrics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Uncertainty | es_ES |
dc.subject | Multivariate statistical process control | es_ES |
dc.subject | Unfolding | es_ES |
dc.subject | Principal component analysis | es_ES |
dc.subject | Synchronization | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Bilinear modeling of batch processes. Part III: Parameter Stability | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cem.2562 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | González Martínez, JM.; Camacho Páez, J.; Ferrer, A. (2014). Bilinear modeling of batch processes. Part III: Parameter Stability. Journal of Chemometrics. 28(1):10-27. https://doi.org/10.1002/cem.2562 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cem.2562 | es_ES |
dc.description.upvformatpinicio | 10 | es_ES |
dc.description.upvformatpfin | 27 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 282481 | es_ES |
dc.identifier.eissn | 1099-128X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Process analysis and abnormal situation detection: from theory to practice. (2002). IEEE Control Systems, 22(5), 10-25. doi:10.1109/mcs.2002.1035214 | es_ES |
dc.description.references | Statistical monitoring of multistage, multiphase batch processes. (2002). IEEE Control Systems, 22(5), 40-52. doi:10.1109/mcs.2002.1035216 | es_ES |
dc.description.references | Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859 | es_ES |
dc.description.references | Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3 | es_ES |
dc.description.references | Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part I: theoretical discussion. Journal of Chemometrics, 22(5), 299-308. doi:10.1002/cem.1113 | es_ES |
dc.description.references | Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part II: a comparison of PLS soft-sensors. Journal of Chemometrics, 22(10), 533-547. doi:10.1002/cem.1179 | es_ES |
dc.description.references | González-Martínez J Vitale R de Noord O Ferrer A Does synchronization matter in bilinear batch process monitoring? | es_ES |
dc.description.references | García-Muñoz, S., Kourti, T., MacGregor, J. F., Mateos, A. G., & Murphy, G. (2003). Troubleshooting of an Industrial Batch Process Using Multivariate Methods. Industrial & Engineering Chemistry Research, 42(15), 3592-3601. doi:10.1021/ie0300023 | es_ES |
dc.description.references | Zarzo, M., & Ferrer, A. (2004). Batch process diagnosis: PLS with variable selection versus block-wise PCR. Chemometrics and Intelligent Laboratory Systems, 73(1), 15-27. doi:10.1016/j.chemolab.2003.11.009 | es_ES |
dc.description.references | Wallace D Prosensus multivariate v12. 02 2010 | es_ES |
dc.description.references | Louwerse, D. J., Tates, A. A., Smilde, A. K., Koot, G. L. M., & Berndt, H. (1999). PLS discriminant analysis with contribution plots to determine differences between parallel batch reactors in the process industry. Chemometrics and Intelligent Laboratory Systems, 46(2), 197-206. doi:10.1016/s0169-7439(98)00185-3 | es_ES |
dc.description.references | Nomikos, P., & MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375. doi:10.1002/aic.690400809 | es_ES |
dc.description.references | Kaistha, N., & Moore, C. F. (2001). Extraction of Event Times in Batch Profiles for Time Synchronization and Quality Predictions. Industrial & Engineering Chemistry Research, 40(1), 252-260. doi:10.1021/ie990937c | es_ES |
dc.description.references | Ramsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7 | es_ES |
dc.description.references | Andersen, S. W., & Runger, G. C. (2012). Automated feature extraction from profiles with application to a batch fermentation process. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(2), 327-344. doi:10.1111/j.1467-9876.2011.01032.x | es_ES |
dc.description.references | Kassidas, A., MacGregor, J. F., & Taylor, P. A. (1998). Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 44(4), 864-875. doi:10.1002/aic.690440412 | es_ES |
dc.description.references | González-Martínez, J. M., Ferrer, A., & Westerhuis, J. A. (2011). Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping. Chemometrics and Intelligent Laboratory Systems, 105(2), 195-206. doi:10.1016/j.chemolab.2011.01.003 | es_ES |
dc.description.references | Zhang Y Edgar TF A robust dynamic time warping algorithm for batch trajectory synchronization 2008 2864 2860 | es_ES |
dc.description.references | Gins, G., Van den Kerkhof, P., & Van Impe, J. F. M. (2012). Hybrid Derivative Dynamic Time Warping for Online Industrial Batch-End Quality Estimation. Industrial & Engineering Chemistry Research, 51(17), 6071-6084. doi:10.1021/ie2019068 | es_ES |
dc.description.references | Gurden, S. P., Westerhuis, J. A., Bijlsma, S., & Smilde, A. K. (2000). Modelling of spectroscopic batch process data using grey models to incorporate external information. Journal of Chemometrics, 15(2), 101-121. doi:10.1002/1099-128x(200102)15:2<101::aid-cem602>3.0.co;2-v | es_ES |
dc.description.references | Kourti, T. (2003). Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 17(1), 93-109. doi:10.1002/cem.778 | es_ES |
dc.description.references | Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1999). Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 13(3-4), 397-413. doi:10.1002/(sici)1099-128x(199905/08)13:3/4<397::aid-cem559>3.0.co;2-i | es_ES |
dc.description.references | Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888 | es_ES |
dc.description.references | Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 331-340. doi:10.1016/s0169-7439(98)00162-2 | es_ES |
dc.description.references | Chen, J., & Liu, K.-C. (2002). On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 57(1), 63-75. doi:10.1016/s0009-2509(01)00366-9 | es_ES |
dc.description.references | Ramaker, H.-J., van Sprang, E. N. M., Westerhuis, J. A., & Smilde, A. K. (2005). Fault detection properties of global, local and time evolving models for batch process monitoring. Journal of Process Control, 15(7), 799-805. doi:10.1016/j.jprocont.2005.02.001 | es_ES |
dc.description.references | Lennox, B., Montague, G. A., Hiden, H. G., Kornfeld, G., & Goulding, P. R. (2001). Process monitoring of an industrial fed-batch fermentation. Biotechnology and Bioengineering, 74(2), 125-135. doi:10.1002/bit.1102 | es_ES |
dc.description.references | Ündey, C., Ertunç, S., & Çınar, A. (2003). Online Batch/Fed-Batch Process Performance Monitoring, Quality Prediction, and Variable-Contribution Analysis for Diagnosis. Industrial & Engineering Chemistry Research, 42(20), 4645-4658. doi:10.1021/ie0208218 | es_ES |
dc.description.references | Camacho, J., & Picó, J. (2006). Multi-phase principal component analysis for batch processes modelling. Chemometrics and Intelligent Laboratory Systems, 81(2), 127-136. doi:10.1016/j.chemolab.2005.11.003 | es_ES |
dc.description.references | Rännar, S., MacGregor, J. F., & Wold, S. (1998). Adaptive batch monitoring using hierarchical PCA. Chemometrics and Intelligent Laboratory Systems, 41(1), 73-81. doi:10.1016/s0169-7439(98)00024-0 | es_ES |
dc.description.references | Camacho, J., Picó, J., & Ferrer, A. (2009). The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter? Analytica Chimica Acta, 642(1-2), 59-68. doi:10.1016/j.aca.2009.02.001 | es_ES |
dc.description.references | Van Sprang, E. N. ., Ramaker, H.-J., Westerhuis, J. A., Gurden, S. P., & Smilde, A. K. (2002). Critical evaluation of approaches for on-line batch process monitoring. Chemical Engineering Science, 57(18), 3979-3991. doi:10.1016/s0009-2509(02)00338-x | es_ES |
dc.description.references | Lei, F., Rotbøll, M., & Jørgensen, S. B. (2001). A biochemically structured model for Saccharomyces cerevisiae. Journal of Biotechnology, 88(3), 205-221. doi:10.1016/s0168-1656(01)00269-3 | es_ES |
dc.description.references | Camacho J González-Martínez J Ferrer A Multi-phase (MP) toolbox 2013 http://mseg.webs.upv.es/Software.html | es_ES |
dc.description.references | Camacho, J., Picó, J., & Ferrer, A. (2008). Multi-phase analysis framework for handling batch process data. Journal of Chemometrics, 22(11-12), 632-643. doi:10.1002/cem.1151 | es_ES |