- -

Bilinear modeling of batch processes. Part III: Parameter Stability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bilinear modeling of batch processes. Part III: Parameter Stability

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Martínez, José María es_ES
dc.contributor.author Camacho Páez, José es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2016-02-11T13:24:13Z
dc.date.available 2016-02-11T13:24:13Z
dc.date.issued 2014-01
dc.identifier.issn 0886-9383
dc.identifier.uri http://hdl.handle.net/10251/60810
dc.description.abstract A paramount aspect in the development of a model for a monitoring system is the so-called parameter stability. This is inversely related to the uncertainty, i.e., the variance in the parameters estimates. Noise affects the performance of the monitoring system, reducing its fault detection capability. Low parameters uncertainty is desired to ensure a reduced amount of noise in the model. Nonetheless, there is no sound study on the parameter stability in batch multivariate statistical process control (BMSPC). The aim of this paper is to investigate the parameter stability associated to the most used synchronization and principal component analysis-based BMSPC methods. The synchronization methods included in this study are the following: indicator variable, dynamic time warping, relaxed greedy time warping, and time linear expanding/compressing-based. In addition, different arrangements of the three-way batch data into two-way matrices are considered, namely single-model, K-models, and hierarchicalmodel approaches. Results are discussed in connection with previous conclusions in the first two papers of the series. es_ES
dc.description.sponsorship This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02. Authors also acknowledge the anonymous reviewers for their comments to improve the article. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Chemometrics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Stability es_ES
dc.subject Uncertainty es_ES
dc.subject Multivariate statistical process control es_ES
dc.subject Unfolding es_ES
dc.subject Principal component analysis es_ES
dc.subject Synchronization es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Bilinear modeling of batch processes. Part III: Parameter Stability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cem.2562
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation González Martínez, JM.; Camacho Páez, J.; Ferrer, A. (2014). Bilinear modeling of batch processes. Part III: Parameter Stability. Journal of Chemometrics. 28(1):10-27. https://doi.org/10.1002/cem.2562 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cem.2562 es_ES
dc.description.upvformatpinicio 10 es_ES
dc.description.upvformatpfin 27 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 282481 es_ES
dc.identifier.eissn 1099-128X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Process analysis and abnormal situation detection: from theory to practice. (2002). IEEE Control Systems, 22(5), 10-25. doi:10.1109/mcs.2002.1035214 es_ES
dc.description.references Statistical monitoring of multistage, multiphase batch processes. (2002). IEEE Control Systems, 22(5), 40-52. doi:10.1109/mcs.2002.1035216 es_ES
dc.description.references Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859 es_ES
dc.description.references Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3 es_ES
dc.description.references Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part I: theoretical discussion. Journal of Chemometrics, 22(5), 299-308. doi:10.1002/cem.1113 es_ES
dc.description.references Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part II: a comparison of PLS soft-sensors. Journal of Chemometrics, 22(10), 533-547. doi:10.1002/cem.1179 es_ES
dc.description.references González-Martínez J Vitale R de Noord O Ferrer A Does synchronization matter in bilinear batch process monitoring? es_ES
dc.description.references García-Muñoz, S., Kourti, T., MacGregor, J. F., Mateos, A. G., & Murphy, G. (2003). Troubleshooting of an Industrial Batch Process Using Multivariate Methods. Industrial & Engineering Chemistry Research, 42(15), 3592-3601. doi:10.1021/ie0300023 es_ES
dc.description.references Zarzo, M., & Ferrer, A. (2004). Batch process diagnosis: PLS with variable selection versus block-wise PCR. Chemometrics and Intelligent Laboratory Systems, 73(1), 15-27. doi:10.1016/j.chemolab.2003.11.009 es_ES
dc.description.references Wallace D Prosensus multivariate v12. 02 2010 es_ES
dc.description.references Louwerse, D. J., Tates, A. A., Smilde, A. K., Koot, G. L. M., & Berndt, H. (1999). PLS discriminant analysis with contribution plots to determine differences between parallel batch reactors in the process industry. Chemometrics and Intelligent Laboratory Systems, 46(2), 197-206. doi:10.1016/s0169-7439(98)00185-3 es_ES
dc.description.references Nomikos, P., & MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375. doi:10.1002/aic.690400809 es_ES
dc.description.references Kaistha, N., & Moore, C. F. (2001). Extraction of Event Times in Batch Profiles for Time Synchronization and Quality Predictions. Industrial & Engineering Chemistry Research, 40(1), 252-260. doi:10.1021/ie990937c es_ES
dc.description.references Ramsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7 es_ES
dc.description.references Andersen, S. W., & Runger, G. C. (2012). Automated feature extraction from profiles with application to a batch fermentation process. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(2), 327-344. doi:10.1111/j.1467-9876.2011.01032.x es_ES
dc.description.references Kassidas, A., MacGregor, J. F., & Taylor, P. A. (1998). Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 44(4), 864-875. doi:10.1002/aic.690440412 es_ES
dc.description.references González-Martínez, J. M., Ferrer, A., & Westerhuis, J. A. (2011). Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping. Chemometrics and Intelligent Laboratory Systems, 105(2), 195-206. doi:10.1016/j.chemolab.2011.01.003 es_ES
dc.description.references Zhang Y Edgar TF A robust dynamic time warping algorithm for batch trajectory synchronization 2008 2864 2860 es_ES
dc.description.references Gins, G., Van den Kerkhof, P., & Van Impe, J. F. M. (2012). Hybrid Derivative Dynamic Time Warping for Online Industrial Batch-End Quality Estimation. Industrial & Engineering Chemistry Research, 51(17), 6071-6084. doi:10.1021/ie2019068 es_ES
dc.description.references Gurden, S. P., Westerhuis, J. A., Bijlsma, S., & Smilde, A. K. (2000). Modelling of spectroscopic batch process data using grey models to incorporate external information. Journal of Chemometrics, 15(2), 101-121. doi:10.1002/1099-128x(200102)15:2<101::aid-cem602>3.0.co;2-v es_ES
dc.description.references Kourti, T. (2003). Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 17(1), 93-109. doi:10.1002/cem.778 es_ES
dc.description.references Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1999). Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 13(3-4), 397-413. doi:10.1002/(sici)1099-128x(199905/08)13:3/4<397::aid-cem559>3.0.co;2-i es_ES
dc.description.references Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888 es_ES
dc.description.references Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 331-340. doi:10.1016/s0169-7439(98)00162-2 es_ES
dc.description.references Chen, J., & Liu, K.-C. (2002). On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 57(1), 63-75. doi:10.1016/s0009-2509(01)00366-9 es_ES
dc.description.references Ramaker, H.-J., van Sprang, E. N. M., Westerhuis, J. A., & Smilde, A. K. (2005). Fault detection properties of global, local and time evolving models for batch process monitoring. Journal of Process Control, 15(7), 799-805. doi:10.1016/j.jprocont.2005.02.001 es_ES
dc.description.references Lennox, B., Montague, G. A., Hiden, H. G., Kornfeld, G., & Goulding, P. R. (2001). Process monitoring of an industrial fed-batch fermentation. Biotechnology and Bioengineering, 74(2), 125-135. doi:10.1002/bit.1102 es_ES
dc.description.references Ündey, C., Ertunç, S., & Çınar, A. (2003). Online Batch/Fed-Batch Process Performance Monitoring, Quality Prediction, and Variable-Contribution Analysis for Diagnosis. Industrial & Engineering Chemistry Research, 42(20), 4645-4658. doi:10.1021/ie0208218 es_ES
dc.description.references Camacho, J., & Picó, J. (2006). Multi-phase principal component analysis for batch processes modelling. Chemometrics and Intelligent Laboratory Systems, 81(2), 127-136. doi:10.1016/j.chemolab.2005.11.003 es_ES
dc.description.references Rännar, S., MacGregor, J. F., & Wold, S. (1998). Adaptive batch monitoring using hierarchical PCA. Chemometrics and Intelligent Laboratory Systems, 41(1), 73-81. doi:10.1016/s0169-7439(98)00024-0 es_ES
dc.description.references Camacho, J., Picó, J., & Ferrer, A. (2009). The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter? Analytica Chimica Acta, 642(1-2), 59-68. doi:10.1016/j.aca.2009.02.001 es_ES
dc.description.references Van Sprang, E. N. ., Ramaker, H.-J., Westerhuis, J. A., Gurden, S. P., & Smilde, A. K. (2002). Critical evaluation of approaches for on-line batch process monitoring. Chemical Engineering Science, 57(18), 3979-3991. doi:10.1016/s0009-2509(02)00338-x es_ES
dc.description.references Lei, F., Rotbøll, M., & Jørgensen, S. B. (2001). A biochemically structured model for Saccharomyces cerevisiae. Journal of Biotechnology, 88(3), 205-221. doi:10.1016/s0168-1656(01)00269-3 es_ES
dc.description.references Camacho J González-Martínez J Ferrer A Multi-phase (MP) toolbox 2013 http://mseg.webs.upv.es/Software.html es_ES
dc.description.references Camacho, J., Picó, J., & Ferrer, A. (2008). Multi-phase analysis framework for handling batch process data. Journal of Chemometrics, 22(11-12), 632-643. doi:10.1002/cem.1151 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem