- -

Bilinear modeling of batch processes. Part III: Parameter Stability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bilinear modeling of batch processes. Part III: Parameter Stability

Mostrar el registro completo del ítem

González Martínez, JM.; Camacho Páez, J.; Ferrer, A. (2014). Bilinear modeling of batch processes. Part III: Parameter Stability. Journal of Chemometrics. 28(1):10-27. https://doi.org/10.1002/cem.2562

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60810

Ficheros en el ítem

Metadatos del ítem

Título: Bilinear modeling of batch processes. Part III: Parameter Stability
Autor: González Martínez, José María Camacho Páez, José Ferrer, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
A paramount aspect in the development of a model for a monitoring system is the so-called parameter stability. This is inversely related to the uncertainty, i.e., the variance in the parameters estimates. Noise affects the ...[+]
Palabras clave: Stability , Uncertainty , Multivariate statistical process control , Unfolding , Principal component analysis , Synchronization
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Chemometrics. (issn: 0886-9383 ) (eissn: 1099-128X )
DOI: 10.1002/cem.2562
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/cem.2562
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/
Agradecimientos:
This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02. Authors also acknowledge the anonymous reviewers for their comments to improve the article.[+]
Tipo: Artículo

References

Process analysis and abnormal situation detection: from theory to practice. (2002). IEEE Control Systems, 22(5), 10-25. doi:10.1109/mcs.2002.1035214

Statistical monitoring of multistage, multiphase batch processes. (2002). IEEE Control Systems, 22(5), 40-52. doi:10.1109/mcs.2002.1035216

Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859 [+]
Process analysis and abnormal situation detection: from theory to practice. (2002). IEEE Control Systems, 22(5), 10-25. doi:10.1109/mcs.2002.1035214

Statistical monitoring of multistage, multiphase batch processes. (2002). IEEE Control Systems, 22(5), 40-52. doi:10.1109/mcs.2002.1035216

Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859

Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3

Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part I: theoretical discussion. Journal of Chemometrics, 22(5), 299-308. doi:10.1002/cem.1113

Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part II: a comparison of PLS soft-sensors. Journal of Chemometrics, 22(10), 533-547. doi:10.1002/cem.1179

González-Martínez J Vitale R de Noord O Ferrer A Does synchronization matter in bilinear batch process monitoring?

García-Muñoz, S., Kourti, T., MacGregor, J. F., Mateos, A. G., & Murphy, G. (2003). Troubleshooting of an Industrial Batch Process Using Multivariate Methods. Industrial & Engineering Chemistry Research, 42(15), 3592-3601. doi:10.1021/ie0300023

Zarzo, M., & Ferrer, A. (2004). Batch process diagnosis: PLS with variable selection versus block-wise PCR. Chemometrics and Intelligent Laboratory Systems, 73(1), 15-27. doi:10.1016/j.chemolab.2003.11.009

Wallace D Prosensus multivariate v12. 02 2010

Louwerse, D. J., Tates, A. A., Smilde, A. K., Koot, G. L. M., & Berndt, H. (1999). PLS discriminant analysis with contribution plots to determine differences between parallel batch reactors in the process industry. Chemometrics and Intelligent Laboratory Systems, 46(2), 197-206. doi:10.1016/s0169-7439(98)00185-3

Nomikos, P., & MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375. doi:10.1002/aic.690400809

Kaistha, N., & Moore, C. F. (2001). Extraction of Event Times in Batch Profiles for Time Synchronization and Quality Predictions. Industrial & Engineering Chemistry Research, 40(1), 252-260. doi:10.1021/ie990937c

Ramsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7

Andersen, S. W., & Runger, G. C. (2012). Automated feature extraction from profiles with application to a batch fermentation process. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(2), 327-344. doi:10.1111/j.1467-9876.2011.01032.x

Kassidas, A., MacGregor, J. F., & Taylor, P. A. (1998). Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 44(4), 864-875. doi:10.1002/aic.690440412

González-Martínez, J. M., Ferrer, A., & Westerhuis, J. A. (2011). Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping. Chemometrics and Intelligent Laboratory Systems, 105(2), 195-206. doi:10.1016/j.chemolab.2011.01.003

Zhang Y Edgar TF A robust dynamic time warping algorithm for batch trajectory synchronization 2008 2864 2860

Gins, G., Van den Kerkhof, P., & Van Impe, J. F. M. (2012). Hybrid Derivative Dynamic Time Warping for Online Industrial Batch-End Quality Estimation. Industrial & Engineering Chemistry Research, 51(17), 6071-6084. doi:10.1021/ie2019068

Gurden, S. P., Westerhuis, J. A., Bijlsma, S., & Smilde, A. K. (2000). Modelling of spectroscopic batch process data using grey models to incorporate external information. Journal of Chemometrics, 15(2), 101-121. doi:10.1002/1099-128x(200102)15:2<101::aid-cem602>3.0.co;2-v

Kourti, T. (2003). Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 17(1), 93-109. doi:10.1002/cem.778

Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1999). Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 13(3-4), 397-413. doi:10.1002/(sici)1099-128x(199905/08)13:3/4<397::aid-cem559>3.0.co;2-i

Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888

Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 331-340. doi:10.1016/s0169-7439(98)00162-2

Chen, J., & Liu, K.-C. (2002). On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 57(1), 63-75. doi:10.1016/s0009-2509(01)00366-9

Ramaker, H.-J., van Sprang, E. N. M., Westerhuis, J. A., & Smilde, A. K. (2005). Fault detection properties of global, local and time evolving models for batch process monitoring. Journal of Process Control, 15(7), 799-805. doi:10.1016/j.jprocont.2005.02.001

Lennox, B., Montague, G. A., Hiden, H. G., Kornfeld, G., & Goulding, P. R. (2001). Process monitoring of an industrial fed-batch fermentation. Biotechnology and Bioengineering, 74(2), 125-135. doi:10.1002/bit.1102

Ündey, C., Ertunç, S., & Çınar, A. (2003). Online Batch/Fed-Batch Process Performance Monitoring, Quality Prediction, and Variable-Contribution Analysis for Diagnosis. Industrial & Engineering Chemistry Research, 42(20), 4645-4658. doi:10.1021/ie0208218

Camacho, J., & Picó, J. (2006). Multi-phase principal component analysis for batch processes modelling. Chemometrics and Intelligent Laboratory Systems, 81(2), 127-136. doi:10.1016/j.chemolab.2005.11.003

Rännar, S., MacGregor, J. F., & Wold, S. (1998). Adaptive batch monitoring using hierarchical PCA. Chemometrics and Intelligent Laboratory Systems, 41(1), 73-81. doi:10.1016/s0169-7439(98)00024-0

Camacho, J., Picó, J., & Ferrer, A. (2009). The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter? Analytica Chimica Acta, 642(1-2), 59-68. doi:10.1016/j.aca.2009.02.001

Van Sprang, E. N. ., Ramaker, H.-J., Westerhuis, J. A., Gurden, S. P., & Smilde, A. K. (2002). Critical evaluation of approaches for on-line batch process monitoring. Chemical Engineering Science, 57(18), 3979-3991. doi:10.1016/s0009-2509(02)00338-x

Lei, F., Rotbøll, M., & Jørgensen, S. B. (2001). A biochemically structured model for Saccharomyces cerevisiae. Journal of Biotechnology, 88(3), 205-221. doi:10.1016/s0168-1656(01)00269-3

Camacho J González-Martínez J Ferrer A Multi-phase (MP) toolbox 2013 http://mseg.webs.upv.es/Software.html

Camacho, J., Picó, J., & Ferrer, A. (2008). Multi-phase analysis framework for handling batch process data. Journal of Chemometrics, 22(11-12), 632-643. doi:10.1002/cem.1151

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem