- -

Microwave, spark plasma and conventional sintering to obtain controlled thermal expansion beta-eucryptite materials

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Microwave, spark plasma and conventional sintering to obtain controlled thermal expansion beta-eucryptite materials

Show simple item record

Files in this item

dc.contributor.author Benavente Martínez, Rut es_ES
dc.contributor.author Salvador Moya, Mª Dolores es_ES
dc.contributor.author Borrell Tomás, María Amparo es_ES
dc.contributor.author García Moreno, Olga es_ES
dc.contributor.author Peñaranda Foix, Felipe Laureano es_ES
dc.contributor.author Catalá Civera, José Manuel es_ES
dc.date.accessioned 2016-02-15T09:41:05Z
dc.date.available 2016-02-15T09:41:05Z
dc.date.issued 2015-06
dc.identifier.issn 1546-542X
dc.identifier.uri http://hdl.handle.net/10251/60864
dc.description.abstract Lithium aluminosilicate was fabricated by conventional and non-conventional sintering: microwave and spark plasma sintering, from 1200 to 1300 ºC. A considerable difference in densification, microstructure, coefficient of thermal expansion behavior and hardness and Young’s modulus was observed. Microwave technology made possible to obtain fully dense glass-free lithium aluminosilicate bulk material (>99%) with near-zero and controlled coefficient of thermal expansion and relatively high mechanical properties (7.1 GPa of hardness and 110 GPa of Young’s modulus) compared to the other two processes. It is believed that the heating mode and effective particle packing by microwave sintering are responsible to improve these properties. es_ES
dc.description.sponsorship The authors would like to thank Dr. Emilio Rayon for performing the nanoindentation analysis in the Materials Technology institute (ITM) of the Polytechnic University of Valencia (UPV) and your financial support received of UPV under project SP20120621 and SP20120677 and Spanish government through the project (TEC2012-37532-C02-01) and cofunded by ERDF (European Regional Development Funds). A. Borrell acknowledges the Spanish Ministry of Science and Innovation for a Juan de la Cierva contract (JCI-2011-10498) and SCSIE of the University of Valencia. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof International Journal of Applied Ceramic Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ceramics es_ES
dc.subject Densification es_ES
dc.subject Coefficient es_ES
dc.subject Fabrication es_ES
dc.subject Alumina es_ES
dc.subject Growth es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Microwave, spark plasma and conventional sintering to obtain controlled thermal expansion beta-eucryptite materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/ijac.12285
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20120621/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-37532-C02-01/ES/DISPOSITIVOS DE DIELECTROMETRIA DINAMICA DE MICROONDAS DE POTENCIA PARA SINTERIZADO DE MATERIALES DE ALTO RENDIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20120677/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JCI-2011-10498/ES/JCI-2011-10498/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Benavente Martínez, R.; Salvador Moya, MD.; Borrell Tomás, MA.; García Moreno, O.; Peñaranda Foix, FL.; Catalá Civera, JM. (2015). Microwave, spark plasma and conventional sintering to obtain controlled thermal expansion beta-eucryptite materials. International Journal of Applied Ceramic Technology. 1-7. https://doi.org/10.1111/ijac.12285 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/ijac.12285 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 268235 es_ES
dc.identifier.eissn 1744-7402
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Bach, H. (Ed.). (1995). Low Thermal Expansion Glass Ceramics. Schott Series on Glass and Glass Ceramics. doi:10.1007/978-3-662-03083-7 es_ES
dc.description.references Roy, R., Agrawal, D. K., & McKinstry, H. A. (1989). Very Low Thermal Expansion Coefficient Materials. Annual Review of Materials Science, 19(1), 59-81. doi:10.1146/annurev.ms.19.080189.000423 es_ES
dc.description.references García-Moreno, O., Kriven, W. M., Moya, J. S., & Torrecillas, R. (2013). Alumina Region of the Lithium Aluminosilicate System: A New Window for Temperature Ultrastable Materials Design. Journal of the American Ceramic Society, 96(7), 2039-2041. doi:10.1111/jace.12428 es_ES
dc.description.references Chen, J.-C., Huang, G.-C., Hu, C., & Weng, J.-P. (2003). Synthesis of negative-thermal-expansion ZrW2O8 substrates. Scripta Materialia, 49(3), 261-266. doi:10.1016/s1359-6462(03)00213-6 es_ES
dc.description.references Abdel-Fattah, W. I., & Abdellah, R. (1997). Lithia porcelains as promising breeder candidates — I. Preparation and characterization of β-eucryptite and β-spodumene porcelain. Ceramics International, 23(6), 463-469. doi:10.1016/s0272-8842(96)00054-5 es_ES
dc.description.references Sheu, G.-J., Chen, J.-C., Shiu, J.-Y., & Hu, C. (2005). Synthesis of negative thermal expansion TiO2-doped LAS substrates. Scripta Materialia, 53(5), 577-580. doi:10.1016/j.scriptamat.2005.04.028 es_ES
dc.description.references Soares, V. O., Peitl, O., & Zanotto, E. D. (2013). New Sintered Li2O-Al2O3-SiO2Ultra-Low Expansion Glass-Ceramic. Journal of the American Ceramic Society, 96(4), 1143-1149. doi:10.1111/jace.12266 es_ES
dc.description.references Hu, A. M., Li, M., & Mao, D. L. (2008). Growth behavior, morphology and properties of lithium aluminosilicate glass ceramics with different amount of CaO, MgO and TiO2 additive. Ceramics International, 34(6), 1393-1397. doi:10.1016/j.ceramint.2007.03.032 es_ES
dc.description.references Ogiwara, T., Noda, Y., Shoji, K., & Kimura, O. (2011). Low-Temperature Sintering of High-Strength β-Eucryptite Ceramics with Low Thermal Expansion Using Li2O-GeO2 as a Sintering Additive. Journal of the American Ceramic Society, 94(5), 1427-1433. doi:10.1111/j.1551-2916.2010.04279.x es_ES
dc.description.references Anselmi-Tamburini, U., Garay, J. E., & Munir, Z. A. (2006). Fast low-temperature consolidation of bulk nanometric ceramic materials. Scripta Materialia, 54(5), 823-828. doi:10.1016/j.scriptamat.2005.11.015 es_ES
dc.description.references Borrell, A., Salvador, M. D., Peñaranda-Foix, F. L., & Cátala-Civera, J. M. (2012). Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties. International Journal of Applied Ceramic Technology, 10(2), 313-320. doi:10.1111/j.1744-7402.2011.02741.x es_ES
dc.description.references Yoshimura, M. (1998). Journal of Materials Science Letters, 17(16), 1389-1391. doi:10.1023/a:1026476430465 es_ES
dc.description.references Nishimura, T., Mitomo, M., Hirotsuru, H., & Kawahara, M. (1995). Fabrication of silicon nitride nano-ceramics by spark plasma sintering. Journal of Materials Science Letters, 14(15), 1046-1047. doi:10.1007/bf00258160 es_ES
dc.description.references Chaim, R. (2007). Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Materials Science and Engineering: A, 443(1-2), 25-32. doi:10.1016/j.msea.2006.07.092 es_ES
dc.description.references Chaim, R. (2006). Superfast densification of nanocrystalline oxide powders by spark plasma sintering. Journal of Materials Science, 41(23), 7862-7871. doi:10.1007/s10853-006-0605-7 es_ES
dc.description.references Borrell, A., Salvador, M. D., Rayón, E., & Peñaranda-Foix, F. L. (2012). Improvement of microstructural properties of 3Y-TZP materials by conventional and non-conventional sintering techniques. Ceramics International, 38(1), 39-43. doi:10.1016/j.ceramint.2011.06.035 es_ES
dc.description.references Benavente, R., Borrell, A., Salvador, M. D., Garcia-Moreno, O., Peñaranda-Foix, F. L., & Catala-Civera, J. M. (2014). Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering. Ceramics International, 40(1), 935-941. doi:10.1016/j.ceramint.2013.06.089 es_ES
dc.description.references Cheng, J., Agrawal, D., Zhang, Y., & Roy, R. (2002). Microwave sintering of transparent alumina. Materials Letters, 56(4), 587-592. doi:10.1016/s0167-577x(02)00557-8 es_ES
dc.description.references García-Moreno, O., Fernández, A., Khainakov, S., & Torrecillas, R. (2010). Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures. Scripta Materialia, 63(2), 170-173. doi:10.1016/j.scriptamat.2010.03.047 es_ES
dc.description.references P. J. Plaza-Gonzalez A. J. Canos J. M. Catala-Civera J. D. Gutierrez-Cano Proceedings of the 13th International Conference on Microwave and RF Heating 447 450 2011 es_ES
dc.description.references Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583. doi:10.1557/jmr.1992.1564 es_ES
dc.description.references Wang, S.-Y., Wang, W., Wang, W.-Z., & Du, Y.-W. (2002). Preparation and characterization of highly oriented NiO(200) films by a pulse ultrasonic spray pyrolysis method. Materials Science and Engineering: B, 90(1-2), 133-137. doi:10.1016/s0921-5107(01)00922-9 es_ES
dc.description.references Ghosh, S., Chokshi, A. H., Lee, P., & Raj, R. (2009). A Huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia. Journal of the American Ceramic Society, 92(8), 1856-1859. doi:10.1111/j.1551-2916.2009.03102.x es_ES
dc.description.references Coble, R. L. (1961). Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models. Journal of Applied Physics, 32(5), 787-792. doi:10.1063/1.1736107 es_ES
dc.description.references Munir, Z. A., Quach, D. V., & Ohyanagi, M. (2010). Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process. Journal of the American Ceramic Society, 94(1), 1-19. doi:10.1111/j.1551-2916.2010.04210.x es_ES
dc.description.references Rybakov, K. I., Olevsky, E. A., & Krikun, E. V. (2013). Microwave Sintering: Fundamentals and Modeling. Journal of the American Ceramic Society, 96(4), 1003-1020. doi:10.1111/jace.12278 es_ES
dc.description.references Pelletant, A., Reveron, H., Chêvalier, J., Fantozzi, G., Blanchard, L., Guinot, F., & Falzon, F. (2012). Grain size dependence of pure β-eucryptite thermal expansion coefficient. Materials Letters, 66(1), 68-71. doi:10.1016/j.matlet.2011.07.107 es_ES
dc.description.references Bruno, G., Garlea, V. O., Muth, J., Efremov, A. M., Watkins, T. R., & Shyam, A. (2012). Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model. Acta Materialia, 60(12), 4982-4996. doi:10.1016/j.actamat.2012.04.033 es_ES
dc.description.references Ramalingam, S., & Reimanis, I. E. (2012). Effect of Doping on the Thermal Expansion of β-Eucryptite Prepared by Sol-Gel Methods. Journal of the American Ceramic Society, 95(9), 2939-2943. doi:10.1111/j.1551-2916.2012.05338.x es_ES
dc.description.references Vaidhyanathan, B., Annapoorani, K., Binner, J., & Raghavendra, R. (2010). Microwave Sintering of Multilayer Integrated Passive Devices. Journal of the American Ceramic Society, 93(8), 2274-2280. doi:10.1111/j.1551-2916.2010.03740.x es_ES


This item appears in the following Collection(s)

Show simple item record