Mostrar el registro sencillo del ítem
dc.contributor.author | Benavente Martínez, Rut | es_ES |
dc.contributor.author | Salvador Moya, Mª Dolores | es_ES |
dc.contributor.author | Borrell Tomás, María Amparo | es_ES |
dc.contributor.author | García Moreno, Olga | es_ES |
dc.contributor.author | Peñaranda Foix, Felipe Laureano | es_ES |
dc.contributor.author | Catalá Civera, José Manuel | es_ES |
dc.date.accessioned | 2016-02-15T09:41:05Z | |
dc.date.available | 2016-02-15T09:41:05Z | |
dc.date.issued | 2015-06 | |
dc.identifier.issn | 1546-542X | |
dc.identifier.uri | http://hdl.handle.net/10251/60864 | |
dc.description.abstract | Lithium aluminosilicate was fabricated by conventional and non-conventional sintering: microwave and spark plasma sintering, from 1200 to 1300 ºC. A considerable difference in densification, microstructure, coefficient of thermal expansion behavior and hardness and Young’s modulus was observed. Microwave technology made possible to obtain fully dense glass-free lithium aluminosilicate bulk material (>99%) with near-zero and controlled coefficient of thermal expansion and relatively high mechanical properties (7.1 GPa of hardness and 110 GPa of Young’s modulus) compared to the other two processes. It is believed that the heating mode and effective particle packing by microwave sintering are responsible to improve these properties. | es_ES |
dc.description.sponsorship | The authors would like to thank Dr. Emilio Rayon for performing the nanoindentation analysis in the Materials Technology institute (ITM) of the Polytechnic University of Valencia (UPV) and your financial support received of UPV under project SP20120621 and SP20120677 and Spanish government through the project (TEC2012-37532-C02-01) and cofunded by ERDF (European Regional Development Funds). A. Borrell acknowledges the Spanish Ministry of Science and Innovation for a Juan de la Cierva contract (JCI-2011-10498) and SCSIE of the University of Valencia. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | International Journal of Applied Ceramic Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ceramics | es_ES |
dc.subject | Densification | es_ES |
dc.subject | Coefficient | es_ES |
dc.subject | Fabrication | es_ES |
dc.subject | Alumina | es_ES |
dc.subject | Growth | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Microwave, spark plasma and conventional sintering to obtain controlled thermal expansion beta-eucryptite materials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/ijac.12285 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120621/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-37532-C02-01/ES/DISPOSITIVOS DE DIELECTROMETRIA DINAMICA DE MICROONDAS DE POTENCIA PARA SINTERIZADO DE MATERIALES DE ALTO RENDIMIENTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120677/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JCI-2011-10498/ES/JCI-2011-10498/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Benavente Martínez, R.; Salvador Moya, MD.; Borrell Tomás, MA.; García Moreno, O.; Peñaranda Foix, FL.; Catalá Civera, JM. (2015). Microwave, spark plasma and conventional sintering to obtain controlled thermal expansion beta-eucryptite materials. International Journal of Applied Ceramic Technology. 1-7. https://doi.org/10.1111/ijac.12285 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1111/ijac.12285 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 268235 | es_ES |
dc.identifier.eissn | 1744-7402 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Bach, H. (Ed.). (1995). Low Thermal Expansion Glass Ceramics. Schott Series on Glass and Glass Ceramics. doi:10.1007/978-3-662-03083-7 | es_ES |
dc.description.references | Roy, R., Agrawal, D. K., & McKinstry, H. A. (1989). Very Low Thermal Expansion Coefficient Materials. Annual Review of Materials Science, 19(1), 59-81. doi:10.1146/annurev.ms.19.080189.000423 | es_ES |
dc.description.references | García-Moreno, O., Kriven, W. M., Moya, J. S., & Torrecillas, R. (2013). Alumina Region of the Lithium Aluminosilicate System: A New Window for Temperature Ultrastable Materials Design. Journal of the American Ceramic Society, 96(7), 2039-2041. doi:10.1111/jace.12428 | es_ES |
dc.description.references | Chen, J.-C., Huang, G.-C., Hu, C., & Weng, J.-P. (2003). Synthesis of negative-thermal-expansion ZrW2O8 substrates. Scripta Materialia, 49(3), 261-266. doi:10.1016/s1359-6462(03)00213-6 | es_ES |
dc.description.references | Abdel-Fattah, W. I., & Abdellah, R. (1997). Lithia porcelains as promising breeder candidates — I. Preparation and characterization of β-eucryptite and β-spodumene porcelain. Ceramics International, 23(6), 463-469. doi:10.1016/s0272-8842(96)00054-5 | es_ES |
dc.description.references | Sheu, G.-J., Chen, J.-C., Shiu, J.-Y., & Hu, C. (2005). Synthesis of negative thermal expansion TiO2-doped LAS substrates. Scripta Materialia, 53(5), 577-580. doi:10.1016/j.scriptamat.2005.04.028 | es_ES |
dc.description.references | Soares, V. O., Peitl, O., & Zanotto, E. D. (2013). New Sintered Li2O-Al2O3-SiO2Ultra-Low Expansion Glass-Ceramic. Journal of the American Ceramic Society, 96(4), 1143-1149. doi:10.1111/jace.12266 | es_ES |
dc.description.references | Hu, A. M., Li, M., & Mao, D. L. (2008). Growth behavior, morphology and properties of lithium aluminosilicate glass ceramics with different amount of CaO, MgO and TiO2 additive. Ceramics International, 34(6), 1393-1397. doi:10.1016/j.ceramint.2007.03.032 | es_ES |
dc.description.references | Ogiwara, T., Noda, Y., Shoji, K., & Kimura, O. (2011). Low-Temperature Sintering of High-Strength β-Eucryptite Ceramics with Low Thermal Expansion Using Li2O-GeO2 as a Sintering Additive. Journal of the American Ceramic Society, 94(5), 1427-1433. doi:10.1111/j.1551-2916.2010.04279.x | es_ES |
dc.description.references | Anselmi-Tamburini, U., Garay, J. E., & Munir, Z. A. (2006). Fast low-temperature consolidation of bulk nanometric ceramic materials. Scripta Materialia, 54(5), 823-828. doi:10.1016/j.scriptamat.2005.11.015 | es_ES |
dc.description.references | Borrell, A., Salvador, M. D., Peñaranda-Foix, F. L., & Cátala-Civera, J. M. (2012). Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties. International Journal of Applied Ceramic Technology, 10(2), 313-320. doi:10.1111/j.1744-7402.2011.02741.x | es_ES |
dc.description.references | Yoshimura, M. (1998). Journal of Materials Science Letters, 17(16), 1389-1391. doi:10.1023/a:1026476430465 | es_ES |
dc.description.references | Nishimura, T., Mitomo, M., Hirotsuru, H., & Kawahara, M. (1995). Fabrication of silicon nitride nano-ceramics by spark plasma sintering. Journal of Materials Science Letters, 14(15), 1046-1047. doi:10.1007/bf00258160 | es_ES |
dc.description.references | Chaim, R. (2007). Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Materials Science and Engineering: A, 443(1-2), 25-32. doi:10.1016/j.msea.2006.07.092 | es_ES |
dc.description.references | Chaim, R. (2006). Superfast densification of nanocrystalline oxide powders by spark plasma sintering. Journal of Materials Science, 41(23), 7862-7871. doi:10.1007/s10853-006-0605-7 | es_ES |
dc.description.references | Borrell, A., Salvador, M. D., Rayón, E., & Peñaranda-Foix, F. L. (2012). Improvement of microstructural properties of 3Y-TZP materials by conventional and non-conventional sintering techniques. Ceramics International, 38(1), 39-43. doi:10.1016/j.ceramint.2011.06.035 | es_ES |
dc.description.references | Benavente, R., Borrell, A., Salvador, M. D., Garcia-Moreno, O., Peñaranda-Foix, F. L., & Catala-Civera, J. M. (2014). Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering. Ceramics International, 40(1), 935-941. doi:10.1016/j.ceramint.2013.06.089 | es_ES |
dc.description.references | Cheng, J., Agrawal, D., Zhang, Y., & Roy, R. (2002). Microwave sintering of transparent alumina. Materials Letters, 56(4), 587-592. doi:10.1016/s0167-577x(02)00557-8 | es_ES |
dc.description.references | García-Moreno, O., Fernández, A., Khainakov, S., & Torrecillas, R. (2010). Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures. Scripta Materialia, 63(2), 170-173. doi:10.1016/j.scriptamat.2010.03.047 | es_ES |
dc.description.references | P. J. Plaza-Gonzalez A. J. Canos J. M. Catala-Civera J. D. Gutierrez-Cano Proceedings of the 13th International Conference on Microwave and RF Heating 447 450 2011 | es_ES |
dc.description.references | Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583. doi:10.1557/jmr.1992.1564 | es_ES |
dc.description.references | Wang, S.-Y., Wang, W., Wang, W.-Z., & Du, Y.-W. (2002). Preparation and characterization of highly oriented NiO(200) films by a pulse ultrasonic spray pyrolysis method. Materials Science and Engineering: B, 90(1-2), 133-137. doi:10.1016/s0921-5107(01)00922-9 | es_ES |
dc.description.references | Ghosh, S., Chokshi, A. H., Lee, P., & Raj, R. (2009). A Huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia. Journal of the American Ceramic Society, 92(8), 1856-1859. doi:10.1111/j.1551-2916.2009.03102.x | es_ES |
dc.description.references | Coble, R. L. (1961). Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models. Journal of Applied Physics, 32(5), 787-792. doi:10.1063/1.1736107 | es_ES |
dc.description.references | Munir, Z. A., Quach, D. V., & Ohyanagi, M. (2010). Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process. Journal of the American Ceramic Society, 94(1), 1-19. doi:10.1111/j.1551-2916.2010.04210.x | es_ES |
dc.description.references | Rybakov, K. I., Olevsky, E. A., & Krikun, E. V. (2013). Microwave Sintering: Fundamentals and Modeling. Journal of the American Ceramic Society, 96(4), 1003-1020. doi:10.1111/jace.12278 | es_ES |
dc.description.references | Pelletant, A., Reveron, H., Chêvalier, J., Fantozzi, G., Blanchard, L., Guinot, F., & Falzon, F. (2012). Grain size dependence of pure β-eucryptite thermal expansion coefficient. Materials Letters, 66(1), 68-71. doi:10.1016/j.matlet.2011.07.107 | es_ES |
dc.description.references | Bruno, G., Garlea, V. O., Muth, J., Efremov, A. M., Watkins, T. R., & Shyam, A. (2012). Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model. Acta Materialia, 60(12), 4982-4996. doi:10.1016/j.actamat.2012.04.033 | es_ES |
dc.description.references | Ramalingam, S., & Reimanis, I. E. (2012). Effect of Doping on the Thermal Expansion of β-Eucryptite Prepared by Sol-Gel Methods. Journal of the American Ceramic Society, 95(9), 2939-2943. doi:10.1111/j.1551-2916.2012.05338.x | es_ES |
dc.description.references | Vaidhyanathan, B., Annapoorani, K., Binner, J., & Raghavendra, R. (2010). Microwave Sintering of Multilayer Integrated Passive Devices. Journal of the American Ceramic Society, 93(8), 2274-2280. doi:10.1111/j.1551-2916.2010.03740.x | es_ES |