Bach, H. (Ed.). (1995). Low Thermal Expansion Glass Ceramics. Schott Series on Glass and Glass Ceramics. doi:10.1007/978-3-662-03083-7
Roy, R., Agrawal, D. K., & McKinstry, H. A. (1989). Very Low Thermal Expansion Coefficient Materials. Annual Review of Materials Science, 19(1), 59-81. doi:10.1146/annurev.ms.19.080189.000423
García-Moreno, O., Kriven, W. M., Moya, J. S., & Torrecillas, R. (2013). Alumina Region of the Lithium Aluminosilicate System: A New Window for Temperature Ultrastable Materials Design. Journal of the American Ceramic Society, 96(7), 2039-2041. doi:10.1111/jace.12428
[+]
Bach, H. (Ed.). (1995). Low Thermal Expansion Glass Ceramics. Schott Series on Glass and Glass Ceramics. doi:10.1007/978-3-662-03083-7
Roy, R., Agrawal, D. K., & McKinstry, H. A. (1989). Very Low Thermal Expansion Coefficient Materials. Annual Review of Materials Science, 19(1), 59-81. doi:10.1146/annurev.ms.19.080189.000423
García-Moreno, O., Kriven, W. M., Moya, J. S., & Torrecillas, R. (2013). Alumina Region of the Lithium Aluminosilicate System: A New Window for Temperature Ultrastable Materials Design. Journal of the American Ceramic Society, 96(7), 2039-2041. doi:10.1111/jace.12428
Chen, J.-C., Huang, G.-C., Hu, C., & Weng, J.-P. (2003). Synthesis of negative-thermal-expansion ZrW2O8 substrates. Scripta Materialia, 49(3), 261-266. doi:10.1016/s1359-6462(03)00213-6
Abdel-Fattah, W. I., & Abdellah, R. (1997). Lithia porcelains as promising breeder candidates — I. Preparation and characterization of β-eucryptite and β-spodumene porcelain. Ceramics International, 23(6), 463-469. doi:10.1016/s0272-8842(96)00054-5
Sheu, G.-J., Chen, J.-C., Shiu, J.-Y., & Hu, C. (2005). Synthesis of negative thermal expansion TiO2-doped LAS substrates. Scripta Materialia, 53(5), 577-580. doi:10.1016/j.scriptamat.2005.04.028
Soares, V. O., Peitl, O., & Zanotto, E. D. (2013). New Sintered Li2O-Al2O3-SiO2Ultra-Low Expansion Glass-Ceramic. Journal of the American Ceramic Society, 96(4), 1143-1149. doi:10.1111/jace.12266
Hu, A. M., Li, M., & Mao, D. L. (2008). Growth behavior, morphology and properties of lithium aluminosilicate glass ceramics with different amount of CaO, MgO and TiO2 additive. Ceramics International, 34(6), 1393-1397. doi:10.1016/j.ceramint.2007.03.032
Ogiwara, T., Noda, Y., Shoji, K., & Kimura, O. (2011). Low-Temperature Sintering of High-Strength β-Eucryptite Ceramics with Low Thermal Expansion Using Li2O-GeO2 as a Sintering Additive. Journal of the American Ceramic Society, 94(5), 1427-1433. doi:10.1111/j.1551-2916.2010.04279.x
Anselmi-Tamburini, U., Garay, J. E., & Munir, Z. A. (2006). Fast low-temperature consolidation of bulk nanometric ceramic materials. Scripta Materialia, 54(5), 823-828. doi:10.1016/j.scriptamat.2005.11.015
Borrell, A., Salvador, M. D., Peñaranda-Foix, F. L., & Cátala-Civera, J. M. (2012). Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties. International Journal of Applied Ceramic Technology, 10(2), 313-320. doi:10.1111/j.1744-7402.2011.02741.x
Yoshimura, M. (1998). Journal of Materials Science Letters, 17(16), 1389-1391. doi:10.1023/a:1026476430465
Nishimura, T., Mitomo, M., Hirotsuru, H., & Kawahara, M. (1995). Fabrication of silicon nitride nano-ceramics by spark plasma sintering. Journal of Materials Science Letters, 14(15), 1046-1047. doi:10.1007/bf00258160
Chaim, R. (2007). Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Materials Science and Engineering: A, 443(1-2), 25-32. doi:10.1016/j.msea.2006.07.092
Chaim, R. (2006). Superfast densification of nanocrystalline oxide powders by spark plasma sintering. Journal of Materials Science, 41(23), 7862-7871. doi:10.1007/s10853-006-0605-7
Borrell, A., Salvador, M. D., Rayón, E., & Peñaranda-Foix, F. L. (2012). Improvement of microstructural properties of 3Y-TZP materials by conventional and non-conventional sintering techniques. Ceramics International, 38(1), 39-43. doi:10.1016/j.ceramint.2011.06.035
Benavente, R., Borrell, A., Salvador, M. D., Garcia-Moreno, O., Peñaranda-Foix, F. L., & Catala-Civera, J. M. (2014). Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering. Ceramics International, 40(1), 935-941. doi:10.1016/j.ceramint.2013.06.089
Cheng, J., Agrawal, D., Zhang, Y., & Roy, R. (2002). Microwave sintering of transparent alumina. Materials Letters, 56(4), 587-592. doi:10.1016/s0167-577x(02)00557-8
García-Moreno, O., Fernández, A., Khainakov, S., & Torrecillas, R. (2010). Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures. Scripta Materialia, 63(2), 170-173. doi:10.1016/j.scriptamat.2010.03.047
P. J. Plaza-Gonzalez A. J. Canos J. M. Catala-Civera J. D. Gutierrez-Cano Proceedings of the 13th International Conference on Microwave and RF Heating 447 450 2011
Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583. doi:10.1557/jmr.1992.1564
Wang, S.-Y., Wang, W., Wang, W.-Z., & Du, Y.-W. (2002). Preparation and characterization of highly oriented NiO(200) films by a pulse ultrasonic spray pyrolysis method. Materials Science and Engineering: B, 90(1-2), 133-137. doi:10.1016/s0921-5107(01)00922-9
Ghosh, S., Chokshi, A. H., Lee, P., & Raj, R. (2009). A Huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia. Journal of the American Ceramic Society, 92(8), 1856-1859. doi:10.1111/j.1551-2916.2009.03102.x
Coble, R. L. (1961). Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models. Journal of Applied Physics, 32(5), 787-792. doi:10.1063/1.1736107
Munir, Z. A., Quach, D. V., & Ohyanagi, M. (2010). Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process. Journal of the American Ceramic Society, 94(1), 1-19. doi:10.1111/j.1551-2916.2010.04210.x
Rybakov, K. I., Olevsky, E. A., & Krikun, E. V. (2013). Microwave Sintering: Fundamentals and Modeling. Journal of the American Ceramic Society, 96(4), 1003-1020. doi:10.1111/jace.12278
Pelletant, A., Reveron, H., Chêvalier, J., Fantozzi, G., Blanchard, L., Guinot, F., & Falzon, F. (2012). Grain size dependence of pure β-eucryptite thermal expansion coefficient. Materials Letters, 66(1), 68-71. doi:10.1016/j.matlet.2011.07.107
Bruno, G., Garlea, V. O., Muth, J., Efremov, A. M., Watkins, T. R., & Shyam, A. (2012). Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model. Acta Materialia, 60(12), 4982-4996. doi:10.1016/j.actamat.2012.04.033
Ramalingam, S., & Reimanis, I. E. (2012). Effect of Doping on the Thermal Expansion of β-Eucryptite Prepared by Sol-Gel Methods. Journal of the American Ceramic Society, 95(9), 2939-2943. doi:10.1111/j.1551-2916.2012.05338.x
Vaidhyanathan, B., Annapoorani, K., Binner, J., & Raghavendra, R. (2010). Microwave Sintering of Multilayer Integrated Passive Devices. Journal of the American Ceramic Society, 93(8), 2274-2280. doi:10.1111/j.1551-2916.2010.03740.x
[-]