Kumar, R. (1997). Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Research, 25(6), 1272-1280. doi:10.1093/nar/25.6.1272
Sintim, H. O., & Kool, E. T. (2006). Enhanced Base Pairing and Replication Efficiency of Thiothymidines, Expanded-size Variants of Thymidine. Journal of the American Chemical Society, 128(2), 396-397. doi:10.1021/ja0562447
Favre, A., & Fourrey, J.-L. (1995). Structural Probing of Small Endonucleolytic Ribozymes in Solution Using Thio-Substituted Nucleobases as Intrinsic Photolabels. Accounts of Chemical Research, 28(9), 375-382. doi:10.1021/ar00057a003
[+]
Kumar, R. (1997). Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Research, 25(6), 1272-1280. doi:10.1093/nar/25.6.1272
Sintim, H. O., & Kool, E. T. (2006). Enhanced Base Pairing and Replication Efficiency of Thiothymidines, Expanded-size Variants of Thymidine. Journal of the American Chemical Society, 128(2), 396-397. doi:10.1021/ja0562447
Favre, A., & Fourrey, J.-L. (1995). Structural Probing of Small Endonucleolytic Ribozymes in Solution Using Thio-Substituted Nucleobases as Intrinsic Photolabels. Accounts of Chemical Research, 28(9), 375-382. doi:10.1021/ar00057a003
Cooper, D. S. (2005). Antithyroid Drugs. New England Journal of Medicine, 352(9), 905-917. doi:10.1056/nejmra042972
Reader, S. C. J., Carroll, B., Robertson, W. R., & Lambert, A. (1987). Assessment of the biopotency of anti-thyroid drugs using porcine thyroid cells. Biochemical Pharmacology, 36(11), 1825-1828. doi:10.1016/0006-2952(87)90245-0
Massey, A., Xu, Y.-Z., & Karran, P. (2001). Photoactivation of DNA thiobases as a potential novel therapeutic option. Current Biology, 11(14), 1142-1146. doi:10.1016/s0960-9822(01)00272-x
Kuramochi, H., Kobayashi, T., Suzuki, T., & Ichimura, T. (2010). Excited-State Dynamics of 6-Aza-2-thiothymine and 2-Thiothymine: Highly Efficient Intersystem Crossing and Singlet Oxygen Photosensitization. The Journal of Physical Chemistry B, 114(26), 8782-8789. doi:10.1021/jp102067t
Harada, Y., Okabe, C., Kobayashi, T., Suzuki, T., Ichimura, T., Nishi, N., & Xu, Y.-Z. (2009). Ultrafast Intersystem Crossing of 4-Thiothymidine in Aqueous Solution. The Journal of Physical Chemistry Letters, 1(2), 480-484. doi:10.1021/jz900276x
Favre, A., Saintomé, C., Fourrey, J.-L., Clivio, P., & Laugâa, P. (1998). Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. Journal of Photochemistry and Photobiology B: Biology, 42(2), 109-124. doi:10.1016/s1011-1344(97)00116-4
Coleman, R. S., & Siedlecki, J. M. (1992). Synthesis of a 4-thio-2’-deoxyuridine containing oligonucleotide. Development of the thiocarbonyl group as a linker element. Journal of the American Chemical Society, 114(23), 9229-9230. doi:10.1021/ja00049a089
Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., … Tuschl, T. (2010). Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell, 141(1), 129-141. doi:10.1016/j.cell.2010.03.009
Basnak, I., Balkan, A., Coe, P. L., & Walker, R. T. (1994). The Synthesis of Some 5-Substituted and 5,6-Disubstituted 2′-Deoxyuridines. Nucleosides and Nucleotides, 13(1-3), 177-196. doi:10.1080/15257779408013234
Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/physreva.38.3098
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785
Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57. doi:10.1016/j.cplett.2004.06.011
Chai, J.-D., & Head-Gordon, M. (2008). Systematic optimization of long-range corrected hybrid density functionals. The Journal of Chemical Physics, 128(8), 084106. doi:10.1063/1.2834918
Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x
Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522
Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54(2), 724-728. doi:10.1063/1.1674902
Dunning, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2), 1007-1023. doi:10.1063/1.456153
Bauernschmitt, R., & Ahlrichs, R. (1996). Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters, 256(4-5), 454-464. doi:10.1016/0009-2614(96)00440-x
Casida, M. E., Jamorski, C., Casida, K. C., & Salahub, D. R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. The Journal of Chemical Physics, 108(11), 4439-4449. doi:10.1063/1.475855
Stratmann, R. E., Scuseria, G. E., & Frisch, M. J. (1998). An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. The Journal of Chemical Physics, 109(19), 8218-8224. doi:10.1063/1.477483
Van Caillie, C., & Amos, R. D. (1999). Geometric derivatives of excitation energies using SCF and DFT. Chemical Physics Letters, 308(3-4), 249-255. doi:10.1016/s0009-2614(99)00646-6
Van Caillie, C., & Amos, R. D. (2000). Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chemical Physics Letters, 317(1-2), 159-164. doi:10.1016/s0009-2614(99)01346-9
Furche, F., & Ahlrichs, R. (2002). Adiabatic time-dependent density functional methods for excited state properties. The Journal of Chemical Physics, 117(16), 7433-7447. doi:10.1063/1.1508368
Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. The Journal of Chemical Physics, 124(9), 094107. doi:10.1063/1.2173258
Cossi, M., Scalmani, G., Rega, N., & Barone, V. (2002). New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. The Journal of Chemical Physics, 117(1), 43-54. doi:10.1063/1.1480445
Barone, V., Cossi, M., & Tomasi, J. (1997). A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. The Journal of Chemical Physics, 107(8), 3210-3221. doi:10.1063/1.474671
[-]