Mostrar el registro sencillo del ítem
dc.contributor.author | Vendrell Criado, Victoria | es_ES |
dc.contributor.author | Sáez Cases, José Antonio | es_ES |
dc.contributor.author | Lhiaubet, Virginie Lyria | es_ES |
dc.contributor.author | Cuquerella Alabort, Maria Consuelo | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | |
dc.date.accessioned | 2016-02-17T10:05:03Z | |
dc.date.available | 2016-02-17T10:05:03Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1474-905X | |
dc.identifier.uri | http://hdl.handle.net/10251/60952 | |
dc.description.abstract | The aim of the present work is to determine the influence of C5 substitution on the photophysical properties of 2-thiopyrimidines (2-TPyr). For this purpose, 2-thiouracil, 5-t-butyl-2-thiouracil and 2-thiothymine (TU, BTU and TT, respectively) have been selected as target thionucleobases for the experimental studies and, in parallel, for DFT theoretical calculations. The UV spectra displayed by TU, BTU and TT in EtOH were very similar to each other. They showed a maximum around 275 nm and a shoulder at ca. 290 nm. The three 2-TPyr exhibited a strong phosphorescence emission; from the recorded spectra, triplet excited state energies of ca. 307, 304 and 294 kJ mol(-1) were determined for TU, BTU and TT, respectively. Laser excitation at 308 nm gave rise to a broad transient absorption band from 500 nm to 700 nm, which was in principle assigned to triplet-triplet absorption. This assignment was confirmed by energy transfer experiments using biphenyl (E-T = 274 kJ mol(-1)) as an acceptor. The triplet lifetimes were 70 ns, 1.1 mu s and 2.3 mu s, for TU, BTU and TT, respectively. The obtained photophysical data, both in phosphorescence and transient absorption measurements, point to significantly different properties of the TT triplet excited state in spite of the structural similarities. Theoretical calculations at the B3LYP/aug-cc-pVDZ/PCM level agree well with the experimental range of excited state energies and support the pi pi(star) nature of the lowest triplet states. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Government (CTQ2009-13699, CTQ2012-32621, RyC-2007-00476 to V. L.-V., and contracts JAE-Predoc 2011-00740 and JAE-Doc 2010-06204 to V. V.-C. and J. A. S. respectively) and the computing facilities provided by the Theoretical Organic Chemistry group at the Universitat de Valencia (http://utopia.uv.es) are acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | DENSITY-FUNCTIONAL THEORY | es_ES |
dc.subject | POLARIZABLE CONTINUUM MODEL | es_ES |
dc.subject | EXCITATION-ENERGIES | es_ES |
dc.subject | GEOMETRIC DERIVATIVES | es_ES |
dc.subject | ANTITHYROID DRUGS | es_ES |
dc.subject | APPROXIMATION | es_ES |
dc.subject | MOLECULES | es_ES |
dc.subject | PROTEIN | es_ES |
dc.subject | STATES | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Photophysical properties of 5-substituted 2-thiopyrimidines | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3pp50058f | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-32621/ES/FOTOQUIMICA DE LA FORMACION Y REPARACION DE LESIONES BIPIRIMIDINICAS DE TIPO (6-4), DEWAR Y ESPORA/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2009-13699/ES/CTQ2009-13699/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//RYC-2007-00476/ES/RYC-2007-00476/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JAEPre_2011_00740/ES/JAEPre_2011_00740/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Vendrell Criado, V.; Sáez Cases, JA.; Lhiaubet, VL.; Cuquerella Alabort, MC.; Miranda Alonso, MÁ. (2013). Photophysical properties of 5-substituted 2-thiopyrimidines. Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences. 12(8):1460-1465. doi:10.1039/c3pp50058f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3pp50058f | es_ES |
dc.description.upvformatpinicio | 1460 | es_ES |
dc.description.upvformatpfin | 1465 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 256842 | es_ES |
dc.description.references | Kumar, R. (1997). Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Research, 25(6), 1272-1280. doi:10.1093/nar/25.6.1272 | es_ES |
dc.description.references | Sintim, H. O., & Kool, E. T. (2006). Enhanced Base Pairing and Replication Efficiency of Thiothymidines, Expanded-size Variants of Thymidine. Journal of the American Chemical Society, 128(2), 396-397. doi:10.1021/ja0562447 | es_ES |
dc.description.references | Favre, A., & Fourrey, J.-L. (1995). Structural Probing of Small Endonucleolytic Ribozymes in Solution Using Thio-Substituted Nucleobases as Intrinsic Photolabels. Accounts of Chemical Research, 28(9), 375-382. doi:10.1021/ar00057a003 | es_ES |
dc.description.references | Cooper, D. S. (2005). Antithyroid Drugs. New England Journal of Medicine, 352(9), 905-917. doi:10.1056/nejmra042972 | es_ES |
dc.description.references | Reader, S. C. J., Carroll, B., Robertson, W. R., & Lambert, A. (1987). Assessment of the biopotency of anti-thyroid drugs using porcine thyroid cells. Biochemical Pharmacology, 36(11), 1825-1828. doi:10.1016/0006-2952(87)90245-0 | es_ES |
dc.description.references | Massey, A., Xu, Y.-Z., & Karran, P. (2001). Photoactivation of DNA thiobases as a potential novel therapeutic option. Current Biology, 11(14), 1142-1146. doi:10.1016/s0960-9822(01)00272-x | es_ES |
dc.description.references | Kuramochi, H., Kobayashi, T., Suzuki, T., & Ichimura, T. (2010). Excited-State Dynamics of 6-Aza-2-thiothymine and 2-Thiothymine: Highly Efficient Intersystem Crossing and Singlet Oxygen Photosensitization. The Journal of Physical Chemistry B, 114(26), 8782-8789. doi:10.1021/jp102067t | es_ES |
dc.description.references | Harada, Y., Okabe, C., Kobayashi, T., Suzuki, T., Ichimura, T., Nishi, N., & Xu, Y.-Z. (2009). Ultrafast Intersystem Crossing of 4-Thiothymidine in Aqueous Solution. The Journal of Physical Chemistry Letters, 1(2), 480-484. doi:10.1021/jz900276x | es_ES |
dc.description.references | Favre, A., Saintomé, C., Fourrey, J.-L., Clivio, P., & Laugâa, P. (1998). Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. Journal of Photochemistry and Photobiology B: Biology, 42(2), 109-124. doi:10.1016/s1011-1344(97)00116-4 | es_ES |
dc.description.references | Coleman, R. S., & Siedlecki, J. M. (1992). Synthesis of a 4-thio-2’-deoxyuridine containing oligonucleotide. Development of the thiocarbonyl group as a linker element. Journal of the American Chemical Society, 114(23), 9229-9230. doi:10.1021/ja00049a089 | es_ES |
dc.description.references | Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., … Tuschl, T. (2010). Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell, 141(1), 129-141. doi:10.1016/j.cell.2010.03.009 | es_ES |
dc.description.references | Basnak, I., Balkan, A., Coe, P. L., & Walker, R. T. (1994). The Synthesis of Some 5-Substituted and 5,6-Disubstituted 2′-Deoxyuridines. Nucleosides and Nucleotides, 13(1-3), 177-196. doi:10.1080/15257779408013234 | es_ES |
dc.description.references | Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/physreva.38.3098 | es_ES |
dc.description.references | Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 | es_ES |
dc.description.references | Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57. doi:10.1016/j.cplett.2004.06.011 | es_ES |
dc.description.references | Chai, J.-D., & Head-Gordon, M. (2008). Systematic optimization of long-range corrected hybrid density functionals. The Journal of Chemical Physics, 128(8), 084106. doi:10.1063/1.2834918 | es_ES |
dc.description.references | Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x | es_ES |
dc.description.references | Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 | es_ES |
dc.description.references | Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54(2), 724-728. doi:10.1063/1.1674902 | es_ES |
dc.description.references | Dunning, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2), 1007-1023. doi:10.1063/1.456153 | es_ES |
dc.description.references | Bauernschmitt, R., & Ahlrichs, R. (1996). Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters, 256(4-5), 454-464. doi:10.1016/0009-2614(96)00440-x | es_ES |
dc.description.references | Casida, M. E., Jamorski, C., Casida, K. C., & Salahub, D. R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. The Journal of Chemical Physics, 108(11), 4439-4449. doi:10.1063/1.475855 | es_ES |
dc.description.references | Stratmann, R. E., Scuseria, G. E., & Frisch, M. J. (1998). An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. The Journal of Chemical Physics, 109(19), 8218-8224. doi:10.1063/1.477483 | es_ES |
dc.description.references | Van Caillie, C., & Amos, R. D. (1999). Geometric derivatives of excitation energies using SCF and DFT. Chemical Physics Letters, 308(3-4), 249-255. doi:10.1016/s0009-2614(99)00646-6 | es_ES |
dc.description.references | Van Caillie, C., & Amos, R. D. (2000). Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chemical Physics Letters, 317(1-2), 159-164. doi:10.1016/s0009-2614(99)01346-9 | es_ES |
dc.description.references | Furche, F., & Ahlrichs, R. (2002). Adiabatic time-dependent density functional methods for excited state properties. The Journal of Chemical Physics, 117(16), 7433-7447. doi:10.1063/1.1508368 | es_ES |
dc.description.references | Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. The Journal of Chemical Physics, 124(9), 094107. doi:10.1063/1.2173258 | es_ES |
dc.description.references | Cossi, M., Scalmani, G., Rega, N., & Barone, V. (2002). New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. The Journal of Chemical Physics, 117(1), 43-54. doi:10.1063/1.1480445 | es_ES |
dc.description.references | Barone, V., Cossi, M., & Tomasi, J. (1997). A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. The Journal of Chemical Physics, 107(8), 3210-3221. doi:10.1063/1.474671 | es_ES |