- -

Photophysical properties of 5-substituted 2-thiopyrimidines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photophysical properties of 5-substituted 2-thiopyrimidines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vendrell Criado, Victoria es_ES
dc.contributor.author Sáez Cases, José Antonio es_ES
dc.contributor.author Lhiaubet, Virginie Lyria es_ES
dc.contributor.author Cuquerella Alabort, Maria Consuelo es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel
dc.date.accessioned 2016-02-17T10:05:03Z
dc.date.available 2016-02-17T10:05:03Z
dc.date.issued 2013
dc.identifier.issn 1474-905X
dc.identifier.uri http://hdl.handle.net/10251/60952
dc.description.abstract The aim of the present work is to determine the influence of C5 substitution on the photophysical properties of 2-thiopyrimidines (2-TPyr). For this purpose, 2-thiouracil, 5-t-butyl-2-thiouracil and 2-thiothymine (TU, BTU and TT, respectively) have been selected as target thionucleobases for the experimental studies and, in parallel, for DFT theoretical calculations. The UV spectra displayed by TU, BTU and TT in EtOH were very similar to each other. They showed a maximum around 275 nm and a shoulder at ca. 290 nm. The three 2-TPyr exhibited a strong phosphorescence emission; from the recorded spectra, triplet excited state energies of ca. 307, 304 and 294 kJ mol(-1) were determined for TU, BTU and TT, respectively. Laser excitation at 308 nm gave rise to a broad transient absorption band from 500 nm to 700 nm, which was in principle assigned to triplet-triplet absorption. This assignment was confirmed by energy transfer experiments using biphenyl (E-T = 274 kJ mol(-1)) as an acceptor. The triplet lifetimes were 70 ns, 1.1 mu s and 2.3 mu s, for TU, BTU and TT, respectively. The obtained photophysical data, both in phosphorescence and transient absorption measurements, point to significantly different properties of the TT triplet excited state in spite of the structural similarities. Theoretical calculations at the B3LYP/aug-cc-pVDZ/PCM level agree well with the experimental range of excited state energies and support the pi pi(star) nature of the lowest triplet states. es_ES
dc.description.sponsorship Financial support by the Spanish Government (CTQ2009-13699, CTQ2012-32621, RyC-2007-00476 to V. L.-V., and contracts JAE-Predoc 2011-00740 and JAE-Doc 2010-06204 to V. V.-C. and J. A. S. respectively) and the computing facilities provided by the Theoretical Organic Chemistry group at the Universitat de Valencia (http://utopia.uv.es) are acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject DENSITY-FUNCTIONAL THEORY es_ES
dc.subject POLARIZABLE CONTINUUM MODEL es_ES
dc.subject EXCITATION-ENERGIES es_ES
dc.subject GEOMETRIC DERIVATIVES es_ES
dc.subject ANTITHYROID DRUGS es_ES
dc.subject APPROXIMATION es_ES
dc.subject MOLECULES es_ES
dc.subject PROTEIN es_ES
dc.subject STATES es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Photophysical properties of 5-substituted 2-thiopyrimidines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3pp50058f
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32621/ES/FOTOQUIMICA DE LA FORMACION Y REPARACION DE LESIONES BIPIRIMIDINICAS DE TIPO (6-4), DEWAR Y ESPORA/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-13699/ES/CTQ2009-13699/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//RYC-2007-00476/ES/RYC-2007-00476/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JAEPre_2011_00740/ES/JAEPre_2011_00740/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Vendrell Criado, V.; Sáez Cases, JA.; Lhiaubet, VL.; Cuquerella Alabort, MC.; Miranda Alonso, MÁ. (2013). Photophysical properties of 5-substituted 2-thiopyrimidines. Photochemical & Photobiological Sciences Photochemical and Photobiological Sciences. 12(8):1460-1465. doi:10.1039/c3pp50058f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3pp50058f es_ES
dc.description.upvformatpinicio 1460 es_ES
dc.description.upvformatpfin 1465 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 256842 es_ES
dc.description.references Kumar, R. (1997). Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Research, 25(6), 1272-1280. doi:10.1093/nar/25.6.1272 es_ES
dc.description.references Sintim, H. O., & Kool, E. T. (2006). Enhanced Base Pairing and Replication Efficiency of Thiothymidines, Expanded-size Variants of Thymidine. Journal of the American Chemical Society, 128(2), 396-397. doi:10.1021/ja0562447 es_ES
dc.description.references Favre, A., & Fourrey, J.-L. (1995). Structural Probing of Small Endonucleolytic Ribozymes in Solution Using Thio-Substituted Nucleobases as Intrinsic Photolabels. Accounts of Chemical Research, 28(9), 375-382. doi:10.1021/ar00057a003 es_ES
dc.description.references Cooper, D. S. (2005). Antithyroid Drugs. New England Journal of Medicine, 352(9), 905-917. doi:10.1056/nejmra042972 es_ES
dc.description.references Reader, S. C. J., Carroll, B., Robertson, W. R., & Lambert, A. (1987). Assessment of the biopotency of anti-thyroid drugs using porcine thyroid cells. Biochemical Pharmacology, 36(11), 1825-1828. doi:10.1016/0006-2952(87)90245-0 es_ES
dc.description.references Massey, A., Xu, Y.-Z., & Karran, P. (2001). Photoactivation of DNA thiobases as a potential novel therapeutic option. Current Biology, 11(14), 1142-1146. doi:10.1016/s0960-9822(01)00272-x es_ES
dc.description.references Kuramochi, H., Kobayashi, T., Suzuki, T., & Ichimura, T. (2010). Excited-State Dynamics of 6-Aza-2-thiothymine and 2-Thiothymine: Highly Efficient Intersystem Crossing and Singlet Oxygen Photosensitization. The Journal of Physical Chemistry B, 114(26), 8782-8789. doi:10.1021/jp102067t es_ES
dc.description.references Harada, Y., Okabe, C., Kobayashi, T., Suzuki, T., Ichimura, T., Nishi, N., & Xu, Y.-Z. (2009). Ultrafast Intersystem Crossing of 4-Thiothymidine in Aqueous Solution. The Journal of Physical Chemistry Letters, 1(2), 480-484. doi:10.1021/jz900276x es_ES
dc.description.references Favre, A., Saintomé, C., Fourrey, J.-L., Clivio, P., & Laugâa, P. (1998). Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. Journal of Photochemistry and Photobiology B: Biology, 42(2), 109-124. doi:10.1016/s1011-1344(97)00116-4 es_ES
dc.description.references Coleman, R. S., & Siedlecki, J. M. (1992). Synthesis of a 4-thio-2’-deoxyuridine containing oligonucleotide. Development of the thiocarbonyl group as a linker element. Journal of the American Chemical Society, 114(23), 9229-9230. doi:10.1021/ja00049a089 es_ES
dc.description.references Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., … Tuschl, T. (2010). Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell, 141(1), 129-141. doi:10.1016/j.cell.2010.03.009 es_ES
dc.description.references Basnak, I., Balkan, A., Coe, P. L., & Walker, R. T. (1994). The Synthesis of Some 5-Substituted and 5,6-Disubstituted 2′-Deoxyuridines. Nucleosides and Nucleotides, 13(1-3), 177-196. doi:10.1080/15257779408013234 es_ES
dc.description.references Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/physreva.38.3098 es_ES
dc.description.references Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 es_ES
dc.description.references Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57. doi:10.1016/j.cplett.2004.06.011 es_ES
dc.description.references Chai, J.-D., & Head-Gordon, M. (2008). Systematic optimization of long-range corrected hybrid density functionals. The Journal of Chemical Physics, 128(8), 084106. doi:10.1063/1.2834918 es_ES
dc.description.references Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x es_ES
dc.description.references Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 es_ES
dc.description.references Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54(2), 724-728. doi:10.1063/1.1674902 es_ES
dc.description.references Dunning, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2), 1007-1023. doi:10.1063/1.456153 es_ES
dc.description.references Bauernschmitt, R., & Ahlrichs, R. (1996). Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters, 256(4-5), 454-464. doi:10.1016/0009-2614(96)00440-x es_ES
dc.description.references Casida, M. E., Jamorski, C., Casida, K. C., & Salahub, D. R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. The Journal of Chemical Physics, 108(11), 4439-4449. doi:10.1063/1.475855 es_ES
dc.description.references Stratmann, R. E., Scuseria, G. E., & Frisch, M. J. (1998). An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. The Journal of Chemical Physics, 109(19), 8218-8224. doi:10.1063/1.477483 es_ES
dc.description.references Van Caillie, C., & Amos, R. D. (1999). Geometric derivatives of excitation energies using SCF and DFT. Chemical Physics Letters, 308(3-4), 249-255. doi:10.1016/s0009-2614(99)00646-6 es_ES
dc.description.references Van Caillie, C., & Amos, R. D. (2000). Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chemical Physics Letters, 317(1-2), 159-164. doi:10.1016/s0009-2614(99)01346-9 es_ES
dc.description.references Furche, F., & Ahlrichs, R. (2002). Adiabatic time-dependent density functional methods for excited state properties. The Journal of Chemical Physics, 117(16), 7433-7447. doi:10.1063/1.1508368 es_ES
dc.description.references Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. The Journal of Chemical Physics, 124(9), 094107. doi:10.1063/1.2173258 es_ES
dc.description.references Cossi, M., Scalmani, G., Rega, N., & Barone, V. (2002). New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. The Journal of Chemical Physics, 117(1), 43-54. doi:10.1063/1.1480445 es_ES
dc.description.references Barone, V., Cossi, M., & Tomasi, J. (1997). A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. The Journal of Chemical Physics, 107(8), 3210-3221. doi:10.1063/1.474671 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem