Mostrar el registro sencillo del ítem
dc.contributor.author | Aranda, Diego F. | es_ES |
dc.contributor.author | Trejos, Deccy Y. | es_ES |
dc.contributor.author | Valverde, Jose C. | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.date.accessioned | 2016-02-17T15:07:46Z | |
dc.date.available | 2016-02-17T15:07:46Z | |
dc.date.issued | 2012-02 | |
dc.identifier.issn | 0170-4214 | |
dc.identifier.uri | http://hdl.handle.net/10251/60964 | |
dc.description.abstract | In this paper, we analyze the Babesiosis transmission dynamics on bovine and tick populations. Ticks play a role of infec- tious agents and vector of the protozoan Babesia hemo-parasite. In this sense, we set out a mathematical model with constant size population for the evolution of the infected bovines with Babesiosis and analyze its qualitative dynamics. Statistical data are used to estimate some of the parameters of the model. Numerical simulations of the model varying the parameters show different scenarios about the spread of the disease | es_ES |
dc.description.sponsorship | Jose C. Valverde thanks Junta de Comunidades de Castilla-La Mancha and Ministerio de Ciencia e Innovacion of Spain for their support for this work through the grants PEII09-0184-7802 and MTM2008-03679/MTM, respectively. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley: 12 months | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear dynamical systems | es_ES |
dc.subject | Lyapunov functions and stability | es_ES |
dc.subject | Epidemiology | es_ES |
dc.subject | Simulation of models | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A mathematical model for Babesiosis disease in bovine and tick populations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.1544 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2008-03679/ES/ECUACIONES EN DIFERENCIAS Y DIFERENCIALES Y SERIES TEMPORALES: ASPECTOS PUROS Y APLICADOS DE LA DINAMICA NO LINEAL/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PEII09-0184-7802/ES/Análisis De Condiciones No Estándar De Bifurcación En Sistemas Dinámicos Y Su Aplicación A Modelos Experimentales./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Aranda, DF.; Trejos, DY.; Valverde, JC.; Villanueva Micó, RJ. (2012). A mathematical model for Babesiosis disease in bovine and tick populations. Mathematical Methods in the Applied Sciences. 35(3):249-256. doi:10.1002/mma.1544 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/mma.1544 | es_ES |
dc.description.upvformatpinicio | 249 | es_ES |
dc.description.upvformatpfin | 256 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 235338 | es_ES |
dc.description.references | Brauer, F., & Castillo-Chávez, C. (2001). Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics. doi:10.1007/978-1-4757-3516-1 | es_ES |
dc.description.references | Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907 | es_ES |
dc.description.references | Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Statistical Methods in Medical Research, 2(1), 23-41. doi:10.1177/096228029300200103 | es_ES |
dc.description.references | Simon, C. P., & Jacquez, J. A. (1992). Reproduction Numbers and the Stability of Equilibria of SI Models for Heterogeneous Populations. SIAM Journal on Applied Mathematics, 52(2), 541-576. doi:10.1137/0152030 | es_ES |
dc.description.references | Thieme, H. R. (2003). Mathematics in Population Biology. doi:10.1515/9780691187655 | es_ES |
dc.description.references | Esteva, L., & Vargas, C. (2000). Influence of vertical and mechanical transmission on the dynamics of dengue disease. Mathematical Biosciences, 167(1), 51-64. doi:10.1016/s0025-5564(00)00024-9 | es_ES |