Mostrar el registro sencillo del ítem
dc.contributor.author | Galindo Lucas, José | es_ES |
dc.contributor.author | Dolz Ruiz, Vicente | es_ES |
dc.contributor.author | Tiseira Izaguirre, Andrés Omar | es_ES |
dc.contributor.author | Gozalbo Belles, Ricardo | es_ES |
dc.date.accessioned | 2016-02-22T08:49:04Z | |
dc.date.issued | 2013-05 | |
dc.identifier.issn | 0742-4795 | |
dc.identifier.uri | http://hdl.handle.net/10251/61023 | |
dc.description.abstract | Active control turbocharger (ACT) has been proposed as a way to improve turbocharger performance under highly pulsating exhaust flows. This technique implies that the variable geometry mechanism in the turbine is used to optimize its position as a function of the instantaneous mass flow during the engine cycle. Tests presented in the literature showed promising results in a pulsating gas-stand. In this work, a modeling study has been conducted at different engine conditions aimed to quantify the gain in on-engine conditions and to develop a strategy to integrate the ACT system within the engine. Different ways of changing the displacement of the variable mechanism have been analyzed by means of a one-dimensional gas dynamic model. The simulations have been carried out at constant engine operating points defined by fixed air-to-fuel ratio for different mechanism displacement functions around an average position that guarantees the desired amount of intake air. The benefits in overall engine efficiency are lower to those predicted in the literature. It can be concluded that it is not possible to use the ACT system to optimize the turbine operating point and at the same time to control the engine operating point. | es_ES |
dc.description.sponsorship | The authors wish to thank Mr. Fabrice Vidal from PSA Peugeot Citroen (France) for his contribution to the work presented here. The work has been partially funded by the Spain's Ministerio de Ciencia y Tecnologia through project TRA2007-65433. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society of Mechanical Engineers (ASME) | es_ES |
dc.relation.ispartof | Journal of Engineering for Gas Turbines and Power | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Turbocharger | es_ES |
dc.subject | ACT | es_ES |
dc.subject | Air management | es_ES |
dc.subject | VGT | es_ES |
dc.subject | IC engine | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Numerical Study of the Implementation of an Active Control Turbocharger on Automotive Diesel Engines | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1115/1.4007963 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//TRA2007-65433/ES/FENOMENOS TRANSITORIOS EN TURBOCOMPRESORES DE SOBREALIMENTACION DE MOTORES DE COMBUSTION INTERNA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Galindo Lucas, J.; Dolz Ruiz, V.; Tiseira Izaguirre, AO.; Gozalbo Belles, R. (2013). Numerical Study of the Implementation of an Active Control Turbocharger on Automotive Diesel Engines. Journal of Engineering for Gas Turbines and Power. 135:1-7. https://doi.org/10.1115/1.4007963 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1115/1.4007963 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 135 | es_ES |
dc.relation.senia | 252721 | es_ES |
dc.identifier.eissn | 1528-8919 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Ghazikhani, M., Davarpanah, M., & Shaegh, S. A. M. (2008). An experimental study on the effects of different opening ranges of waste-gate on the exhaust soot emission of a turbo-charged DI diesel engine. Energy Conversion and Management, 49(10), 2563-2569. doi:10.1016/j.enconman.2008.05.012 | es_ES |
dc.description.references | Ferreau, H. J., Ortner, P., Langthaler, P., Re, L. del, & Diehl, M. (2007). Predictive control of a real-world Diesel engine using an extended online active set strategy. Annual Reviews in Control, 31(2), 293-301. doi:10.1016/j.arcontrol.2007.09.001 | es_ES |
dc.description.references | García-Nieto, S., Martínez, M., Blasco, X., & Sanchis, J. (2008). Nonlinear predictive control based on local model networks for air management in diesel engines. Control Engineering Practice, 16(12), 1399-1413. doi:10.1016/j.conengprac.2008.03.010 | es_ES |
dc.description.references | Pesiridis, A., & Martinez-Botas, R. F. (2005). Experimental Evaluation of Active Flow Control Mixed-Flow Turbine for Automotive Turbocharger Application. Journal of Turbomachinery, 129(1), 44-52. doi:10.1115/1.2372778 | es_ES |
dc.description.references | Karamanis, N., Martinez-Botas, R. F., & Su, C. C. (2000). Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions. Journal of Turbomachinery, 123(2), 359-371. doi:10.1115/1.1354141 | es_ES |
dc.description.references | Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015 | es_ES |
dc.description.references | Serrano, J. R., Arnau, F. J., Dolz, V., Tiseira, A., & Cervelló, C. (2008). A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 49(12), 3729-3745. doi:10.1016/j.enconman.2008.06.031 | es_ES |
dc.description.references | Galindo, J., Climent, H., Guardiola, C., & Tiseira, A. (2009). On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines. Experimental Thermal and Fluid Science, 33(8), 1163-1171. doi:10.1016/j.expthermflusci.2009.07.006 | es_ES |
dc.description.references | Galindo, J., Luján, J. M., Serrano, J. R., Dolz, V., & Guilain, S. (2006). Description of a heat transfer model suitable to calculate transient processes of turbocharged diesel engines with one-dimensional gas-dynamic codes. Applied Thermal Engineering, 26(1), 66-76. doi:10.1016/j.applthermaleng.2005.04.010 | es_ES |