- -

Comparison of multivariate statistical methods for dynamic systems modeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of multivariate statistical methods for dynamic systems modeling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barceló Cerdá, Susana es_ES
dc.contributor.author Vidal Puig, Santiago es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2016-02-23T12:23:05Z
dc.date.available 2016-02-23T12:23:05Z
dc.date.issued 2011-02
dc.identifier.issn 0748-8017
dc.identifier.uri http://hdl.handle.net/10251/61126
dc.description This is the accepted version of the following article: Barceló, S., Vidal-Puig, S. and Ferrer, A. (2011), Comparison of multivariate statistical methods for dynamic systems modeling. Qual. Reliab. Engng. Int., 27: 107–124, which has been published in final form at http://dx.doi.org/10.1002/qre.1102. es_ES
dc.description.abstract In this paper two multivariate statistical methodologies are compared in order to estimate a multi-input multi-output transfer function model in an industrial polymerization process. In these contexts, process variables are usually autocorrelated (i.e. there is time-dependence between observations), posing some problems to classical linear regression models. The two methodologies to be compared are both related to the analyses of multivariate time series: Box-Jenkins methodology and partial least squares time series. Both methodologies are compared keeping in mind different issues, such as the simplicity of the process modeling (i.e. the steps of the identification, estimation and validation of the model), the usefulness of the graphical tools, the goodness of fit, and the parsimony of the estimated models. Real data from a polymerization process are used to illustrate the performance of the methodologies under study. Copyright © 2010 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship This research was partially supported by the Spanish Government (MICINN) and the European Union (RDE funds) under grant DPI2008-06880-C03-03/DPI. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Quality and Reliability Engineering International es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Box-Jenkins es_ES
dc.subject MIMO transfer function model es_ES
dc.subject PLS es_ES
dc.subject Process dynamics es_ES
dc.subject Time series es_ES
dc.subject Autocorrelated es_ES
dc.subject Box-Jenkins methodology es_ES
dc.subject Dynamic systems modeling es_ES
dc.subject Estimated model es_ES
dc.subject Goodness of fit es_ES
dc.subject Graphical tools es_ES
dc.subject Linear regression models es_ES
dc.subject Multi-input multi-output es_ES
dc.subject Multivariate statistical method es_ES
dc.subject Multivariate time series es_ES
dc.subject Partial least squares es_ES
dc.subject Polymerization process es_ES
dc.subject Process Modeling es_ES
dc.subject Process Variables es_ES
dc.subject Time dependence es_ES
dc.subject Transfer function model es_ES
dc.subject MIMO systems es_ES
dc.subject Multivariant analysis es_ES
dc.subject Polymerization es_ES
dc.subject Regression analysis es_ES
dc.subject Transfer functions es_ES
dc.subject Time series analysis es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Comparison of multivariate statistical methods for dynamic systems modeling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/qre.1102
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-06880-C03-03/ES/TECNICAS ESTADISTICAS MULTIVARIANTES PARA EL CONOCIMIENTO, MONITORIZACION Y OPTIMIZACION DE BIOPROCESOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Barceló Cerdá, S.; Vidal Puig, S.; Ferrer, A. (2011). Comparison of multivariate statistical methods for dynamic systems modeling. Quality and Reliability Engineering International. 27(1):107-124. https://doi.org/10.1002/qre.1102 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/qre.1102 es_ES
dc.description.upvformatpinicio 107 es_ES
dc.description.upvformatpfin 124 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 40864 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis. Wiley Series in Probability and Statistics. doi:10.1002/9781118619193 es_ES
dc.description.references Reinsel, G. C. (1997). Elements of Multivariate Time Series Analysis. Springer Series in Statistics. doi:10.1007/978-1-4612-0679-8 es_ES
dc.description.references Wold, S. (1994). Exponentially weighted moving principal components analysis and projections to latent structures. Chemometrics and Intelligent Laboratory Systems, 23(1), 149-161. doi:10.1016/0169-7439(93)e0075-f es_ES
dc.description.references Wise, B. M., & Ricker, N. L. (1993). Identification of finite impulse response models with continuum regression. Journal of Chemometrics, 7(1), 1-14. doi:10.1002/cem.1180070102 es_ES
dc.description.references Dayal, B. S., & MacGregor, J. F. (1996). Identification of Finite Impulse Response Models:  Methods and Robustness Issues. Industrial & Engineering Chemistry Research, 35(11), 4078-4090. doi:10.1021/ie960180e es_ES
dc.description.references Ferrer, A., Aguado, D., Vidal-Puig, S., Prats, J. M., & Zarzo, M. (2008). PLS: A versatile tool for industrial process improvement and optimization. Applied Stochastic Models in Business and Industry, 24(6), 551-567. doi:10.1002/asmb.716 es_ES
dc.description.references Hannan, E. J. (1971). The Identification Problem for Multiple Equation Systems with Moving Average Errors. Econometrica, 39(5), 751. doi:10.2307/1909577 es_ES
dc.description.references Kohn, R. (1979). Identification Results for Armax Structures. Econometrica, 47(5), 1295. doi:10.2307/1911964 es_ES
dc.description.references Chen, C., & Liu, L.-M. (1993). Joint Estimation of Model Parameters and Outlier Effects in Time Series. Journal of the American Statistical Association, 88(421), 284. doi:10.2307/2290724 es_ES
dc.description.references Box, G. E. P., & MacGregor, J. F. (1974). The Analysis of Closed-Loop Dynamic-Stochastic Systems. Technometrics, 16(3), 391. doi:10.2307/1267669 es_ES
dc.description.references Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9 es_ES
dc.description.references Helland, I. S. (1988). On the structure of partial least squares regression. Communications in Statistics - Simulation and Computation, 17(2), 581-607. doi:10.1080/03610918808812681 es_ES
dc.description.references Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, 2(3), 211-228. doi:10.1002/cem.1180020306 es_ES
dc.description.references Wold, S., Albano, C., Dunn, W. J., Edlund, U., Esbensen, K., Geladi, P., … Sjöström, M. (1984). Multivariate Data Analysis in Chemistry. Chemometrics, 17-95. doi:10.1007/978-94-017-1026-8_2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem