- -

Low-Q whispering gallery modes in anisotropic metamterials shells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low-Q whispering gallery modes in anisotropic metamterials shells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz Rubio, Ana es_ES
dc.contributor.author Carbonell Olivares, Jorge es_ES
dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2016-02-23T15:33:33Z
dc.date.available 2016-02-23T15:33:33Z
dc.date.issued 2013-09
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/61131
dc.description.abstract Anisotropic and inhomogeneous metamaterial shells are studied in order to exploit all their resonant mode richness. These multilayer structures are based on a cylindrical distribution of radially dependent constitutive parameters including an inner void cavity. Shell, cavity, and whispering gallery modes are characterized, and special attention is paid to the latter ones. The whispering gallery modes are created at the boundary layers of the shell with the background. Energy localization is produced with highly radiative characteristics when the localization takes place at the external layer. These low-Q resonant states have frequencies that are independent of the shell thickness. However, their quality factors can be controlled by the number of layers forming the shell, which allows confining electromagnetic waves at the interface layers (internal or external), and make them suitable for the harvesting of electromagnetic energy. es_ES
dc.description.sponsorship The authors acknowledge the financial support of Spanish Ministry MINECO (Grants No. TEC 2010-19751 and No. Consolider CSD2008-00066), and the US Office of Naval Research (USA). J. Sanchez-Dehesa acknowledges useful discussions with Federico Sabina and Matthew Guild. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metamaterials es_ES
dc.subject Whispering Gallery modes es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Low-Q whispering gallery modes in anisotropic metamterials shells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.88.115118
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Diaz Rubio, A.; Carbonell Olivares, J.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Low-Q whispering gallery modes in anisotropic metamterials shells. Physical Review B. 88(11):115118-115128. doi:10.1103/PhysRevB.88.115118 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.88.115118 es_ES
dc.description.upvformatpinicio 115118 es_ES
dc.description.upvformatpfin 115128 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 255058 es_ES
dc.identifier.eissn 1550-235X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.description.references Williams, C. R., Andrews, S. R., Maier, S. A., Fernández-Domínguez, A. I., Martín-Moreno, L., & García-Vidal, F. J. (2008). Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2(3), 175-179. doi:10.1038/nphoton.2007.301 es_ES
dc.description.references Watts, C. M., Liu, X., & Padilla, W. J. (2012). Metamaterial Electromagnetic Wave Absorbers. Advanced Materials, 24(23), OP98-OP120. doi:10.1002/adma.201200674 es_ES
dc.description.references Spinelli, P., Verschuuren, M. A., & Polman, A. (2012). Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nature Communications, 3(1). doi:10.1038/ncomms1691 es_ES
dc.description.references Munk, B. A. (2000). Frequency Selective Surfaces. doi:10.1002/0471723770 es_ES
dc.description.references Carbonell, J., Lheurette, E., & Lippens, D. (2011). FROM REJECTION TO TRANSMISSION WITH STACKED ARRAYS OF SPLIT RING RESONATORS. Progress In Electromagnetics Research, 112, 215-224. doi:10.2528/pier10121402 es_ES
dc.description.references Wang, S., Garet, F., Blary, K., Croënne, C., Lheurette, E., Coutaz, J.-L., & Lippens, D. (2010). Composite left/right-handed stacked hole arrays at submillimeter wavelengths. Journal of Applied Physics, 107(7), 074510. doi:10.1063/1.3374703 es_ES
dc.description.references Aznabet, M., Navarro-Cia, M., Kuznetsov, S. A., Gelfand, A. V., Fedorinina, N. I., Goncharov, Y. G., … Sorolla, M. (2008). Polypropylene-substrate-based SRR- and CSRR- metasurfaces for submillimeter waves. Optics Express, 16(22), 18312. doi:10.1364/oe.16.018312 es_ES
dc.description.references Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937 es_ES
dc.description.references Pendry, J. B. (2004). Mimicking Surface Plasmons with Structured Surfaces. Science, 305(5685), 847-848. doi:10.1126/science.1098999 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 es_ES
dc.description.references Carbonell, J., Díaz-Rubio, A., Torrent, D., Cervera, F., Kirleis, M. A., Piqué, A., & Sánchez-Dehesa, J. (2012). Radial Photonic Crystal for detection of frequency and position of radiation sources. Scientific Reports, 2(1). doi:10.1038/srep00558 es_ES
dc.description.references Horiuchi, N., Segawa, Y., Nozokido, T., Mizuno, K., & Miyazaki, H. (2005). High-transmission waveguide with a small radius of curvature at a bend fabricated by use of a circular photonic crystal. Optics Letters, 30(9), 973. doi:10.1364/ol.30.000973 es_ES
dc.description.references Lee, P.-T., Lu, T.-W., Fan, J.-H., & Tsai, F.-M. (2007). High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect. Applied Physics Letters, 90(15), 151125. doi:10.1063/1.2724899 es_ES
dc.description.references Carbonell, J., Torrent, D., & Sanchez-Dehesa, J. (2013). Radial Photonic Crystal Shells and Their Application as Resonant and Radiating Elements. IEEE Transactions on Antennas and Propagation, 61(2), 755-767. doi:10.1109/tap.2012.2225015 es_ES
dc.description.references Harrington, R. F. (2001). Time-Harmonic Electromagnetic Fields. doi:10.1109/9780470546710 es_ES
dc.description.references Vinogradov, A. P., Dorofeenko, A. V., Erokhin, S. G., Inoue, M., Lisyansky, A. A., Merzlikin, A. M., & Granovsky, A. B. (2006). Surface state peculiarities in one-dimensional photonic crystal interfaces. Physical Review B, 74(4). doi:10.1103/physrevb.74.045128 es_ES
dc.description.references Goto, T., Baryshev, A. V., Inoue, M., Dorofeenko, A. V., Merzlikin, A. M., Vinogradov, A. P., … Granovsky, A. B. (2009). Tailoring surfaces of one-dimensional magnetophotonic crystals: Optical Tamm state and Faraday rotation. Physical Review B, 79(12). doi:10.1103/physrevb.79.125103 es_ES
dc.description.references Carbonell, J., Torrent, D., Díaz-Rubio, A., & Sánchez-Dehesa, J. (2011). Multidisciplinary approach to cylindrical anisotropic metamaterials. New Journal of Physics, 13(10), 103034. doi:10.1088/1367-2630/13/10/103034 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2010). Acoustic resonances in two-dimensional radial sonic crystal shells. New Journal of Physics, 12(7), 073034. doi:10.1088/1367-2630/12/7/073034 es_ES
dc.description.references Yao, Y., Yao, J., Narasimhan, V. K., Ruan, Z., Xie, C., Fan, S., & Cui, Y. (2012). Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nature Communications, 3(1). doi:10.1038/ncomms1664 es_ES
dc.description.references Navau, C., Prat-Camps, J., & Sanchez, A. (2012). Magnetic Energy Harvesting and Concentration at a Distance by Transformation Optics. Physical Review Letters, 109(26). doi:10.1103/physrevlett.109.263903 es_ES
dc.description.references Carbonell, J., Cervera, F., Sánchez-Dehesa, J., Arriaga, J., Gumen, L., & Krokhin, A. (2010). Homogenization of two-dimensional anisotropic dissipative photonic crystal. Applied Physics Letters, 97(23), 231122. doi:10.1063/1.3526381 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem