Mostrar el registro sencillo del ítem
dc.contributor.author | Díaz Rubio, Ana | es_ES |
dc.contributor.author | Carbonell Olivares, Jorge | es_ES |
dc.contributor.author | Torrent Martí, Daniel | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2016-02-23T15:33:33Z | |
dc.date.available | 2016-02-23T15:33:33Z | |
dc.date.issued | 2013-09 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.uri | http://hdl.handle.net/10251/61131 | |
dc.description.abstract | Anisotropic and inhomogeneous metamaterial shells are studied in order to exploit all their resonant mode richness. These multilayer structures are based on a cylindrical distribution of radially dependent constitutive parameters including an inner void cavity. Shell, cavity, and whispering gallery modes are characterized, and special attention is paid to the latter ones. The whispering gallery modes are created at the boundary layers of the shell with the background. Energy localization is produced with highly radiative characteristics when the localization takes place at the external layer. These low-Q resonant states have frequencies that are independent of the shell thickness. However, their quality factors can be controlled by the number of layers forming the shell, which allows confining electromagnetic waves at the interface layers (internal or external), and make them suitable for the harvesting of electromagnetic energy. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support of Spanish Ministry MINECO (Grants No. TEC 2010-19751 and No. Consolider CSD2008-00066), and the US Office of Naval Research (USA). J. Sanchez-Dehesa acknowledges useful discussions with Federico Sabina and Matthew Guild. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review B | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Whispering Gallery modes | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Low-Q whispering gallery modes in anisotropic metamterials shells | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevB.88.115118 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Diaz Rubio, A.; Carbonell Olivares, J.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Low-Q whispering gallery modes in anisotropic metamterials shells. Physical Review B. 88(11):115118-115128. doi:10.1103/PhysRevB.88.115118 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1103/PhysRevB.88.115118 | es_ES |
dc.description.upvformatpinicio | 115118 | es_ES |
dc.description.upvformatpfin | 115128 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 88 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 255058 | es_ES |
dc.identifier.eissn | 1550-235X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.description.references | Williams, C. R., Andrews, S. R., Maier, S. A., Fernández-Domínguez, A. I., Martín-Moreno, L., & García-Vidal, F. J. (2008). Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2(3), 175-179. doi:10.1038/nphoton.2007.301 | es_ES |
dc.description.references | Watts, C. M., Liu, X., & Padilla, W. J. (2012). Metamaterial Electromagnetic Wave Absorbers. Advanced Materials, 24(23), OP98-OP120. doi:10.1002/adma.201200674 | es_ES |
dc.description.references | Spinelli, P., Verschuuren, M. A., & Polman, A. (2012). Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nature Communications, 3(1). doi:10.1038/ncomms1691 | es_ES |
dc.description.references | Munk, B. A. (2000). Frequency Selective Surfaces. doi:10.1002/0471723770 | es_ES |
dc.description.references | Carbonell, J., Lheurette, E., & Lippens, D. (2011). FROM REJECTION TO TRANSMISSION WITH STACKED ARRAYS OF SPLIT RING RESONATORS. Progress In Electromagnetics Research, 112, 215-224. doi:10.2528/pier10121402 | es_ES |
dc.description.references | Wang, S., Garet, F., Blary, K., Croënne, C., Lheurette, E., Coutaz, J.-L., & Lippens, D. (2010). Composite left/right-handed stacked hole arrays at submillimeter wavelengths. Journal of Applied Physics, 107(7), 074510. doi:10.1063/1.3374703 | es_ES |
dc.description.references | Aznabet, M., Navarro-Cia, M., Kuznetsov, S. A., Gelfand, A. V., Fedorinina, N. I., Goncharov, Y. G., … Sorolla, M. (2008). Polypropylene-substrate-based SRR- and CSRR- metasurfaces for submillimeter waves. Optics Express, 16(22), 18312. doi:10.1364/oe.16.018312 | es_ES |
dc.description.references | Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937 | es_ES |
dc.description.references | Pendry, J. B. (2004). Mimicking Surface Plasmons with Structured Surfaces. Science, 305(5685), 847-848. doi:10.1126/science.1098999 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 | es_ES |
dc.description.references | Carbonell, J., Díaz-Rubio, A., Torrent, D., Cervera, F., Kirleis, M. A., Piqué, A., & Sánchez-Dehesa, J. (2012). Radial Photonic Crystal for detection of frequency and position of radiation sources. Scientific Reports, 2(1). doi:10.1038/srep00558 | es_ES |
dc.description.references | Horiuchi, N., Segawa, Y., Nozokido, T., Mizuno, K., & Miyazaki, H. (2005). High-transmission waveguide with a small radius of curvature at a bend fabricated by use of a circular photonic crystal. Optics Letters, 30(9), 973. doi:10.1364/ol.30.000973 | es_ES |
dc.description.references | Lee, P.-T., Lu, T.-W., Fan, J.-H., & Tsai, F.-M. (2007). High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect. Applied Physics Letters, 90(15), 151125. doi:10.1063/1.2724899 | es_ES |
dc.description.references | Carbonell, J., Torrent, D., & Sanchez-Dehesa, J. (2013). Radial Photonic Crystal Shells and Their Application as Resonant and Radiating Elements. IEEE Transactions on Antennas and Propagation, 61(2), 755-767. doi:10.1109/tap.2012.2225015 | es_ES |
dc.description.references | Harrington, R. F. (2001). Time-Harmonic Electromagnetic Fields. doi:10.1109/9780470546710 | es_ES |
dc.description.references | Vinogradov, A. P., Dorofeenko, A. V., Erokhin, S. G., Inoue, M., Lisyansky, A. A., Merzlikin, A. M., & Granovsky, A. B. (2006). Surface state peculiarities in one-dimensional photonic crystal interfaces. Physical Review B, 74(4). doi:10.1103/physrevb.74.045128 | es_ES |
dc.description.references | Goto, T., Baryshev, A. V., Inoue, M., Dorofeenko, A. V., Merzlikin, A. M., Vinogradov, A. P., … Granovsky, A. B. (2009). Tailoring surfaces of one-dimensional magnetophotonic crystals: Optical Tamm state and Faraday rotation. Physical Review B, 79(12). doi:10.1103/physrevb.79.125103 | es_ES |
dc.description.references | Carbonell, J., Torrent, D., Díaz-Rubio, A., & Sánchez-Dehesa, J. (2011). Multidisciplinary approach to cylindrical anisotropic metamaterials. New Journal of Physics, 13(10), 103034. doi:10.1088/1367-2630/13/10/103034 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2010). Acoustic resonances in two-dimensional radial sonic crystal shells. New Journal of Physics, 12(7), 073034. doi:10.1088/1367-2630/12/7/073034 | es_ES |
dc.description.references | Yao, Y., Yao, J., Narasimhan, V. K., Ruan, Z., Xie, C., Fan, S., & Cui, Y. (2012). Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nature Communications, 3(1). doi:10.1038/ncomms1664 | es_ES |
dc.description.references | Navau, C., Prat-Camps, J., & Sanchez, A. (2012). Magnetic Energy Harvesting and Concentration at a Distance by Transformation Optics. Physical Review Letters, 109(26). doi:10.1103/physrevlett.109.263903 | es_ES |
dc.description.references | Carbonell, J., Cervera, F., Sánchez-Dehesa, J., Arriaga, J., Gumen, L., & Krokhin, A. (2010). Homogenization of two-dimensional anisotropic dissipative photonic crystal. Applied Physics Letters, 97(23), 231122. doi:10.1063/1.3526381 | es_ES |