- -

Low-Q whispering gallery modes in anisotropic metamterials shells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low-Q whispering gallery modes in anisotropic metamterials shells

Mostrar el registro completo del ítem

Diaz Rubio, A.; Carbonell Olivares, J.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Low-Q whispering gallery modes in anisotropic metamterials shells. Physical Review B. 88(11):115118-115128. doi:10.1103/PhysRevB.88.115118

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61131

Ficheros en el ítem

Metadatos del ítem

Título: Low-Q whispering gallery modes in anisotropic metamterials shells
Autor: Díaz Rubio, Ana Carbonell Olivares, Jorge Torrent Martí, Daniel Sánchez-Dehesa Moreno-Cid, José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
Anisotropic and inhomogeneous metamaterial shells are studied in order to exploit all their resonant mode richness. These multilayer structures are based on a cylindrical distribution of radially dependent constitutive ...[+]
Palabras clave: Metamaterials , Whispering Gallery modes
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Review B. (issn: 1098-0121 ) (eissn: 1550-235X )
DOI: 10.1103/PhysRevB.88.115118
Editorial:
American Physical Society
Versión del editor: http://dx.doi.org/10.1103/PhysRevB.88.115118
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/
Agradecimientos:
The authors acknowledge the financial support of Spanish Ministry MINECO (Grants No. TEC 2010-19751 and No. Consolider CSD2008-00066), and the US Office of Naval Research (USA). J. Sanchez-Dehesa acknowledges useful ...[+]
Tipo: Artículo

References

Williams, C. R., Andrews, S. R., Maier, S. A., Fernández-Domínguez, A. I., Martín-Moreno, L., & García-Vidal, F. J. (2008). Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2(3), 175-179. doi:10.1038/nphoton.2007.301

Watts, C. M., Liu, X., & Padilla, W. J. (2012). Metamaterial Electromagnetic Wave Absorbers. Advanced Materials, 24(23), OP98-OP120. doi:10.1002/adma.201200674

Spinelli, P., Verschuuren, M. A., & Polman, A. (2012). Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nature Communications, 3(1). doi:10.1038/ncomms1691 [+]
Williams, C. R., Andrews, S. R., Maier, S. A., Fernández-Domínguez, A. I., Martín-Moreno, L., & García-Vidal, F. J. (2008). Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2(3), 175-179. doi:10.1038/nphoton.2007.301

Watts, C. M., Liu, X., & Padilla, W. J. (2012). Metamaterial Electromagnetic Wave Absorbers. Advanced Materials, 24(23), OP98-OP120. doi:10.1002/adma.201200674

Spinelli, P., Verschuuren, M. A., & Polman, A. (2012). Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nature Communications, 3(1). doi:10.1038/ncomms1691

Munk, B. A. (2000). Frequency Selective Surfaces. doi:10.1002/0471723770

Carbonell, J., Lheurette, E., & Lippens, D. (2011). FROM REJECTION TO TRANSMISSION WITH STACKED ARRAYS OF SPLIT RING RESONATORS. Progress In Electromagnetics Research, 112, 215-224. doi:10.2528/pier10121402

Wang, S., Garet, F., Blary, K., Croënne, C., Lheurette, E., Coutaz, J.-L., & Lippens, D. (2010). Composite left/right-handed stacked hole arrays at submillimeter wavelengths. Journal of Applied Physics, 107(7), 074510. doi:10.1063/1.3374703

Aznabet, M., Navarro-Cia, M., Kuznetsov, S. A., Gelfand, A. V., Fedorinina, N. I., Goncharov, Y. G., … Sorolla, M. (2008). Polypropylene-substrate-based SRR- and CSRR- metasurfaces for submillimeter waves. Optics Express, 16(22), 18312. doi:10.1364/oe.16.018312

Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937

Pendry, J. B. (2004). Mimicking Surface Plasmons with Structured Surfaces. Science, 305(5685), 847-848. doi:10.1126/science.1098999

Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301

Carbonell, J., Díaz-Rubio, A., Torrent, D., Cervera, F., Kirleis, M. A., Piqué, A., & Sánchez-Dehesa, J. (2012). Radial Photonic Crystal for detection of frequency and position of radiation sources. Scientific Reports, 2(1). doi:10.1038/srep00558

Horiuchi, N., Segawa, Y., Nozokido, T., Mizuno, K., & Miyazaki, H. (2005). High-transmission waveguide with a small radius of curvature at a bend fabricated by use of a circular photonic crystal. Optics Letters, 30(9), 973. doi:10.1364/ol.30.000973

Lee, P.-T., Lu, T.-W., Fan, J.-H., & Tsai, F.-M. (2007). High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect. Applied Physics Letters, 90(15), 151125. doi:10.1063/1.2724899

Carbonell, J., Torrent, D., & Sanchez-Dehesa, J. (2013). Radial Photonic Crystal Shells and Their Application as Resonant and Radiating Elements. IEEE Transactions on Antennas and Propagation, 61(2), 755-767. doi:10.1109/tap.2012.2225015

Harrington, R. F. (2001). Time-Harmonic Electromagnetic Fields. doi:10.1109/9780470546710

Vinogradov, A. P., Dorofeenko, A. V., Erokhin, S. G., Inoue, M., Lisyansky, A. A., Merzlikin, A. M., & Granovsky, A. B. (2006). Surface state peculiarities in one-dimensional photonic crystal interfaces. Physical Review B, 74(4). doi:10.1103/physrevb.74.045128

Goto, T., Baryshev, A. V., Inoue, M., Dorofeenko, A. V., Merzlikin, A. M., Vinogradov, A. P., … Granovsky, A. B. (2009). Tailoring surfaces of one-dimensional magnetophotonic crystals: Optical Tamm state and Faraday rotation. Physical Review B, 79(12). doi:10.1103/physrevb.79.125103

Carbonell, J., Torrent, D., Díaz-Rubio, A., & Sánchez-Dehesa, J. (2011). Multidisciplinary approach to cylindrical anisotropic metamaterials. New Journal of Physics, 13(10), 103034. doi:10.1088/1367-2630/13/10/103034

Torrent, D., & Sánchez-Dehesa, J. (2010). Acoustic resonances in two-dimensional radial sonic crystal shells. New Journal of Physics, 12(7), 073034. doi:10.1088/1367-2630/12/7/073034

Yao, Y., Yao, J., Narasimhan, V. K., Ruan, Z., Xie, C., Fan, S., & Cui, Y. (2012). Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nature Communications, 3(1). doi:10.1038/ncomms1664

Navau, C., Prat-Camps, J., & Sanchez, A. (2012). Magnetic Energy Harvesting and Concentration at a Distance by Transformation Optics. Physical Review Letters, 109(26). doi:10.1103/physrevlett.109.263903

Carbonell, J., Cervera, F., Sánchez-Dehesa, J., Arriaga, J., Gumen, L., & Krokhin, A. (2010). Homogenization of two-dimensional anisotropic dissipative photonic crystal. Applied Physics Letters, 97(23), 231122. doi:10.1063/1.3526381

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem