Mostrar el registro sencillo del ítem
dc.contributor.author | Amigó Mata, Angèlica | es_ES |
dc.contributor.author | Zambrano, Jenny Cecilia | es_ES |
dc.contributor.author | Martínez, S. | es_ES |
dc.contributor.author | Amigó Borrás, Vicente | es_ES |
dc.date.accessioned | 2016-03-03T11:36:13Z | |
dc.date.available | 2016-03-03T11:36:13Z | |
dc.date.issued | 2014-12 | |
dc.identifier.issn | 0032-5899 | |
dc.identifier.uri | http://hdl.handle.net/10251/61399 | |
dc.description.abstract | [EN] beta alloys based on the Ti Nb alloy system are of growing interest to the biomaterial community. The addition of small amounts of Fe and Cr further increases beta-phase stability, improving the properties of Ti Nb alloy. However, PM materials sintered from elemental powders are inhomogeneous due to restricted solid state diffusion and mechanical alloying provides a route to enhance mixing and lemental diffusion. The microstructural characteristics and bend strength of Ti Nb (Fe Cr) alloys obtained from elemental powder mixture and mechanical alloyed powders are compared. Mechanical alloying gives more homogeneous compositions and particle morphology, characterised by rounded, significantly enlarged particles. In the sintered samples alpha and beta phase are observed. The alpha phase appears at the grain boundaries and in lamellae growing inward from the edge, and is depleted in Nb. The b phase is enriched with Nb, Fe and Cr. The addition of Fe and Cr significantly increases the mechanical properties of Ti Nb alloys, providing increased ductility. | es_ES |
dc.description.sponsorship | This paper is based on a presentation at Euro PM 2014, organised by EPMA in Salzburg, Austria on 21-24 September 2014. This work was funded by UPV by the Staff Training Program for Predoctoral Researchers dated 28 February 2014. The Ministry of Science and Innovation of Spain by project research MAT2011-28492-C03 and Generalitat Valenciana by ACOMP / 2014/151. | |
dc.language | Inglés | es_ES |
dc.publisher | Maney Publishing | es_ES |
dc.relation.ispartof | Powder Metallurgy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MIcrostructure | es_ES |
dc.subject | Titanium Alloys | es_ES |
dc.subject | Powder Metallurgy | es_ES |
dc.subject | Flexural test | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Microstructural characterisation of Ti-Nb-(Fe-Cr) alloys obtained by powder metallurgy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1179/0032589914Z.000000000210 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2011-28492-C03/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2014%2F151/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Amigó Mata, A.; Zambrano, JC.; Martínez, S.; Amigó Borrás, V. (2014). Microstructural characterisation of Ti-Nb-(Fe-Cr) alloys obtained by powder metallurgy. Powder Metallurgy. 57(5):316-319. https://doi.org/10.1179/0032589914Z.000000000210 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1179/0032589914Z.000000000210 | es_ES |
dc.description.upvformatpinicio | 316 | es_ES |
dc.description.upvformatpfin | 319 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 277625 | es_ES |
dc.identifier.eissn | 1743-2901 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x | es_ES |
dc.description.references | Wen, M., Wen, C., Hodgson, P., & Li, Y. (2014). Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications. Materials & Design (1980-2015), 56, 629-634. doi:10.1016/j.matdes.2013.11.066 | es_ES |
dc.description.references | Cremasco, A., Messias, A. D., Esposito, A. R., Duek, E. A. de R., & Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering: C, 31(5), 833-839. doi:10.1016/j.msec.2010.12.013 | es_ES |
dc.description.references | Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering: A, 243(1-2), 244-249. doi:10.1016/s0921-5093(97)00808-3 | es_ES |
dc.description.references | Málek, J., Hnilica, F., Veselý, J., & Smola, B. (2013). Heat treatment and mechanical properties of powder metallurgy processed Ti–35.5Nb–5.7Ta beta-titanium alloy. Materials Characterization, 84, 225-231. doi:10.1016/j.matchar.2013.08.006 | es_ES |
dc.description.references | Boyer R, Welsch G and Collings E: ‘Materials properties handbook: titanium alloys’; 1994, Materials Park, OH, ASM International. | es_ES |
dc.description.references | Yang, Y. L., Wang, W. Q., Li, F. L., Li, W. Q., & Zhang, Y. Q. (2009). The Effect of Aluminum Equivalent and Molybdenum Equivalent on the Mechanical Properties of High Strength and High Toughness Titanium Alloys. Materials Science Forum, 618-619, 169-172. doi:10.4028/www.scientific.net/msf.618-619.169 | es_ES |
dc.description.references | Terayama, A., Fuyama, N., Yamashita, Y., Ishizaki, I., & Kyogoku, H. (2013). Fabrication of Ti–Nb alloys by powder metallurgy process and their shape memory characteristics. Journal of Alloys and Compounds, 577, S408-S412. doi:10.1016/j.jallcom.2011.12.166 | es_ES |
dc.description.references | Liu, Y., Chen, L. F., Tang, H. P., Liu, C. T., Liu, B., & Huang, B. Y. (2006). Design of powder metallurgy titanium alloys and composites. Materials Science and Engineering: A, 418(1-2), 25-35. doi:10.1016/j.msea.2005.10.057 | es_ES |
dc.description.references | Bidaux, J.-E., Closuit, C., Rodriguez-Arbaizar, M., Zufferey, D., & Carreño-Morelli, E. (2013). Metal injection moulding of low modulus Ti–Nb alloys for biomedical applications. Powder Metallurgy, 56(4), 263-266. doi:10.1179/0032589913z.000000000118 | es_ES |
dc.description.references | Zhao, D., Chang, K., Ebel, T., Qian, M., Willumeit, R., Yan, M., & Pyczak, F. (2014). Titanium carbide precipitation in Ti–22Nb alloy fabricated by metal injection moulding. Powder Metallurgy, 57(1), 2-4. doi:10.1179/0032589914z.000000000153 | es_ES |
dc.description.references | Zou, L. M., Yang, C., Long, Y., Xiao, Z. Y., & Li, Y. Y. (2012). Fabrication of biomedical Ti–35Nb–7Zr–5Ta alloys by mechanical alloying and spark plasma sintering. Powder Metallurgy, 55(1), 65-70. doi:10.1179/1743290111y.0000000021 | es_ES |
dc.description.references | Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi:10.1016/s0079-6425(99)00010-9 | es_ES |
dc.description.references | EN ISO-3325·2000: ‘Sintered metal materials, excluding hardmetals. Determination of transverse rupture strength’. | es_ES |
dc.description.references | Afonso, C. R. M., Aleixo, G. T., Ramirez, A. J., & Caram, R. (2007). Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Materials Science and Engineering: C, 27(4), 908-913. doi:10.1016/j.msec.2006.11.001 | es_ES |
dc.description.references | Zhao, D., Chang, K., Ebel, T., Qian, M., Willumeit, R., Yan, M., & Pyczak, F. (2013). Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material. Journal of the Mechanical Behavior of Biomedical Materials, 28, 171-182. doi:10.1016/j.jmbbm.2013.08.013 | es_ES |
dc.description.references | Angelo PC and Subramanian R: ‘Powder metallurgy: science, technology and applications’, 1–5, 105–109, 132–133; 2009, New Delhi, PHI Learning. | es_ES |
dc.description.references | Lee, C. M., Ju, C. P., & Chern Lin, J. H. (2002). Structure-property relationship of cast Ti-Nb alloys. Journal of Oral Rehabilitation, 29(4), 314-322. doi:10.1046/j.1365-2842.2002.00825.x | es_ES |
dc.description.references | Lagos, M. A., & Agote, I. (2013). SPS synthesis and consolidation of TiAl alloys from elemental powders: Microstructure evolution. Intermetallics, 36, 51-56. doi:10.1016/j.intermet.2013.01.006 | es_ES |
dc.description.references | Majumdar, P., Singh, S. B., & Chakraborty, M. (2008). Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study. Materials Science and Engineering: A, 489(1-2), 419-425. doi:10.1016/j.msea.2007.12.029 | es_ES |
dc.description.references | Kim, H.-S., Kim, W.-Y., & Lim, S.-H. (2006). Microstructure and elastic modulus of Ti–Nb–Si ternary alloys for biomedical applications. Scripta Materialia, 54(5), 887-891. doi:10.1016/j.scriptamat.2005.11.001 | es_ES |
dc.description.references | Souza, S. A., Manicardi, R. B., Ferrandini, P. L., Afonso, C. R. M., Ramirez, A. J., & Caram, R. (2010). Effect of the addition of Ta on microstructure and properties of Ti–Nb alloys. Journal of Alloys and Compounds, 504(2), 330-340. doi:10.1016/j.jallcom.2010.05.134 | es_ES |