Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x
Wen, M., Wen, C., Hodgson, P., & Li, Y. (2014). Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications. Materials & Design (1980-2015), 56, 629-634. doi:10.1016/j.matdes.2013.11.066
Cremasco, A., Messias, A. D., Esposito, A. R., Duek, E. A. de R., & Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering: C, 31(5), 833-839. doi:10.1016/j.msec.2010.12.013
[+]
Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x
Wen, M., Wen, C., Hodgson, P., & Li, Y. (2014). Fabrication of Ti–Nb–Ag alloy via powder metallurgy for biomedical applications. Materials & Design (1980-2015), 56, 629-634. doi:10.1016/j.matdes.2013.11.066
Cremasco, A., Messias, A. D., Esposito, A. R., Duek, E. A. de R., & Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering: C, 31(5), 833-839. doi:10.1016/j.msec.2010.12.013
Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering: A, 243(1-2), 244-249. doi:10.1016/s0921-5093(97)00808-3
Málek, J., Hnilica, F., Veselý, J., & Smola, B. (2013). Heat treatment and mechanical properties of powder metallurgy processed Ti–35.5Nb–5.7Ta beta-titanium alloy. Materials Characterization, 84, 225-231. doi:10.1016/j.matchar.2013.08.006
Boyer R, Welsch G and Collings E: ‘Materials properties handbook: titanium alloys’; 1994, Materials Park, OH, ASM International.
Yang, Y. L., Wang, W. Q., Li, F. L., Li, W. Q., & Zhang, Y. Q. (2009). The Effect of Aluminum Equivalent and Molybdenum Equivalent on the Mechanical Properties of High Strength and High Toughness Titanium Alloys. Materials Science Forum, 618-619, 169-172. doi:10.4028/www.scientific.net/msf.618-619.169
Terayama, A., Fuyama, N., Yamashita, Y., Ishizaki, I., & Kyogoku, H. (2013). Fabrication of Ti–Nb alloys by powder metallurgy process and their shape memory characteristics. Journal of Alloys and Compounds, 577, S408-S412. doi:10.1016/j.jallcom.2011.12.166
Liu, Y., Chen, L. F., Tang, H. P., Liu, C. T., Liu, B., & Huang, B. Y. (2006). Design of powder metallurgy titanium alloys and composites. Materials Science and Engineering: A, 418(1-2), 25-35. doi:10.1016/j.msea.2005.10.057
Bidaux, J.-E., Closuit, C., Rodriguez-Arbaizar, M., Zufferey, D., & Carreño-Morelli, E. (2013). Metal injection moulding of low modulus Ti–Nb alloys for biomedical applications. Powder Metallurgy, 56(4), 263-266. doi:10.1179/0032589913z.000000000118
Zhao, D., Chang, K., Ebel, T., Qian, M., Willumeit, R., Yan, M., & Pyczak, F. (2014). Titanium carbide precipitation in Ti–22Nb alloy fabricated by metal injection moulding. Powder Metallurgy, 57(1), 2-4. doi:10.1179/0032589914z.000000000153
Zou, L. M., Yang, C., Long, Y., Xiao, Z. Y., & Li, Y. Y. (2012). Fabrication of biomedical Ti–35Nb–7Zr–5Ta alloys by mechanical alloying and spark plasma sintering. Powder Metallurgy, 55(1), 65-70. doi:10.1179/1743290111y.0000000021
Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi:10.1016/s0079-6425(99)00010-9
EN ISO-3325·2000: ‘Sintered metal materials, excluding hardmetals. Determination of transverse rupture strength’.
Afonso, C. R. M., Aleixo, G. T., Ramirez, A. J., & Caram, R. (2007). Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Materials Science and Engineering: C, 27(4), 908-913. doi:10.1016/j.msec.2006.11.001
Zhao, D., Chang, K., Ebel, T., Qian, M., Willumeit, R., Yan, M., & Pyczak, F. (2013). Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material. Journal of the Mechanical Behavior of Biomedical Materials, 28, 171-182. doi:10.1016/j.jmbbm.2013.08.013
Angelo PC and Subramanian R: ‘Powder metallurgy: science, technology and applications’, 1–5, 105–109, 132–133; 2009, New Delhi, PHI Learning.
Lee, C. M., Ju, C. P., & Chern Lin, J. H. (2002). Structure-property relationship of cast Ti-Nb alloys. Journal of Oral Rehabilitation, 29(4), 314-322. doi:10.1046/j.1365-2842.2002.00825.x
Lagos, M. A., & Agote, I. (2013). SPS synthesis and consolidation of TiAl alloys from elemental powders: Microstructure evolution. Intermetallics, 36, 51-56. doi:10.1016/j.intermet.2013.01.006
Majumdar, P., Singh, S. B., & Chakraborty, M. (2008). Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study. Materials Science and Engineering: A, 489(1-2), 419-425. doi:10.1016/j.msea.2007.12.029
Kim, H.-S., Kim, W.-Y., & Lim, S.-H. (2006). Microstructure and elastic modulus of Ti–Nb–Si ternary alloys for biomedical applications. Scripta Materialia, 54(5), 887-891. doi:10.1016/j.scriptamat.2005.11.001
Souza, S. A., Manicardi, R. B., Ferrandini, P. L., Afonso, C. R. M., Ramirez, A. J., & Caram, R. (2010). Effect of the addition of Ta on microstructure and properties of Ti–Nb alloys. Journal of Alloys and Compounds, 504(2), 330-340. doi:10.1016/j.jallcom.2010.05.134
[-]