- -

Copper nanoparticle heterogeneous catalytic 'click' cycloaddition confirmed by single-molecule spectroscopy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Copper nanoparticle heterogeneous catalytic 'click' cycloaddition confirmed by single-molecule spectroscopy

Show simple item record

Files in this item

dc.contributor.author Decan, Matthew R es_ES
dc.contributor.author Impellizzeri, Stefania es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.contributor.author SCAIANO, J. es_ES
dc.date.accessioned 2016-03-03T11:53:26Z
dc.date.available 2016-03-03T11:53:26Z
dc.date.issued 2014-08
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/61400
dc.description.abstract Colloidal or heterogeneous nanocatalysts can improve the range and diversity of Cu(I)catalysed click reactions and facilitate catalyst separation and reuse. Catalysis by metal nanoparticles raises the question as to whether heterogeneous catalysts may cause homogeneous catalysis through metal ion leaching, since the catalytic process could be mediated by the particle, or by metal ions released from it. The question is critical as unwanted homogeneous processes could offset the benefits of heterogeneous catalysis. Here, we combine standard bench scale techniques with single-molecule spectroscopy to monitor single catalytic events in real time and demonstrate that click catalysis occurs directly at the surface of copper nanoparticles; this general approach could be implemented in other systems. We use 'from the mole to the molecule' to describe this emerging idea in which mole scale reactions can be optimized through an intimate understanding of the catalytic process at the single-molecule-single catalytic nanoparticle level. es_ES
dc.description.sponsorship The Natural Sciences and Engineering Research Council of Canada supported this work through its Discovery and CREATE programs, while the Canadian Foundation for Innovation enabled the purchase of the instrumentation used in this work. M. L. M. thanks the Spanish Ministerio de Educacion, Cultura y Deporte (Programa Salvador de Madariaga) for its financial support. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group: Nature Communications es_ES
dc.relation Natural Sciences and Engineering Research Council of Canada through its Discovery and CREATE programs es_ES
dc.relation Spanish Ministerio de Educacion, Cultura y Deporte (Programa Salvador de Madariaga) es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PARTICLE FLUORESCENCE MICROSCOPY es_ES
dc.subject AZIDE-ALKYNE CYCLOADDITION es_ES
dc.subject TERMINAL ALKYNES es_ES
dc.subject MULTICOMPONENT SYNTHESIS es_ES
dc.subject MECHANISTIC INSIGHTS es_ES
dc.subject GOLD NANOPARTICLES es_ES
dc.subject HIGH-RESOLUTION es_ES
dc.subject CHEMISTRY es_ES
dc.subject REACTIVITY es_ES
dc.subject DYNAMICS es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Copper nanoparticle heterogeneous catalytic 'click' cycloaddition confirmed by single-molecule spectroscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms5612
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Decan, MR.; Impellizzeri, S.; Marín García, ML.; Scaiano, J. (2014). Copper nanoparticle heterogeneous catalytic 'click' cycloaddition confirmed by single-molecule spectroscopy. Nature Communications. 5:4612-4615. doi:10.1038/ncomms5612 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/ncomms5612 es_ES
dc.description.upvformatpinicio 4612 es_ES
dc.description.upvformatpfin 4615 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.relation.senia 279830 es_ES
dc.relation.references Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002). es_ES
dc.relation.references Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002). es_ES
dc.relation.references Hein, J. & Fokin, V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 39, 1302–1315 (2010). es_ES
dc.relation.references Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004 (2001). es_ES
dc.relation.references Meldal, M. & Tornoe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008). es_ES
dc.relation.references Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007). es_ES
dc.relation.references Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical—biology applications. Chem. Rev. 113, 4905–4979 (2013). es_ES
dc.relation.references Cintas, P., Barge, A., Tagliapietra, S., Boffa, L. & Cravotto, G. Alkyne–azide click reaction catalyzed by metallic copper under ultrasound. Nat. Protoc. 5, 607–616 (2010). es_ES
dc.relation.references Hong, V., Presolski, S., Ma, C. & Finn, M. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48, 9879–9883 (2009). es_ES
dc.relation.references Kappe, C. & Van Der Eycken, E. Click chemistry under non-classical reaction conditions. Chem. Soc. Rev. 39, 1280–1290 (2010). es_ES
dc.relation.references Pachón, L., Van Maarseveen, J. & Rothenberg, G. Click chemistry: copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv. Synth. Catal. 347, 811–815 (2005). es_ES
dc.relation.references Adzima, B. et al. Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(II) reduction. Nat. Chem. 3, 258–261 (2011). es_ES
dc.relation.references Jin, T., Yan, M. & Yamamoto, Y. Click chemistry of alkyne-azide cycloaddition using nanostructured copper catalysts. ChemCatChem 4, 1217–1229 (2012). es_ES
dc.relation.references Woo, H. et al. Azide-alkyne Huisgen [3+2] cycloaddition using CuO nanoparticles. Molecules 17, 13235–13252 (2012). es_ES
dc.relation.references Rance, G., Solomonsz, W. & Khlobystov, A. Click chemistry in carbon nanoreactors. Chem. Commun. 49, 1067–1069 (2013). es_ES
dc.relation.references Alonso, F., Moglie, Y., Radivoy, G. & Yus, M. Unsupported copper nanoparticles in the 1,3-dipolar cycloaddition of terminal alkynes and azides. Eur. J. Org. Chem. 10, 1875–1884 (2010). es_ES
dc.relation.references Alonso, F., Moglie, Y., Radivoy, G. & Yus, M. Multicomponent synthesis of 1,2,3-triazoles in water catalyzed by copper nanoparticles on activated carbon. Adv. Synth. Catal. 352, 3208–3214 (2010). es_ES
dc.relation.references Raut, D. et al. Copper nanoparticles in ionic liquids: Recyclable and efficient catalytic system for 1,3-dipolar cycloaddition reaction. Catal. Commun. 10, 1240–1243 (2009). es_ES
dc.relation.references Kumar, B. S. P. A., Reddy, K. H. V., Madhav, B., Ramesh, K. & Nageswar, Y. V. D. Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using ‘click chemistry’. Tetrahedron Lett. 53, 4595–4599 (2012). es_ES
dc.relation.references Hudson, R., Li, C. & Moores, A. Magnetic copper–iron nanoparticles as simple heterogeneous catalysts for the azide–alkyne click reaction in water. Green Chem. 14, 622–624 (2012). es_ES
dc.relation.references Sarkar, A., Mukherjee, T. & Kapoor, S. PVP-stabilized copper nanoparticles: a reusable catalyst for ‘click’ reaction between terminal alkynes and azides in nonaqueous solvents. J. Phys. Chem. C 112, 3334–3340 (2008). es_ES
dc.relation.references Pacioni, N. L., Filippenko, V., Presseau, N. & Scaiano, J. C. Oxidation of copper nanoparticles in water: mechanistic insights revealed by oxygen uptake and spectroscopic methods. Dalton Trans. 42, 5832–5838 (2013). es_ES
dc.relation.references Davies, I. W., Matty, L., Hughes, D. L. & Reider, P. J. Are heterogeneous catalysts precursors to homogeneous catalysts? J. Am.Chem. Soc. 123, 10139–10140 (2001). es_ES
dc.relation.references Witham, C. A. et al. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat. Chem. 2, 36–41 (2010). es_ES
dc.relation.references Schmidt, A. F. & Kurokhtina, A. A. Distinguishing between the homogeneous and heterogeneous mechanisms of catalysis in the Mizoroki-Heck and Suzuki-Miyaura reactions: problems and prospects. Kinet. Catal. 53, 714–730 (2012). es_ES
dc.relation.references Nishina, Y., Miyata, J., Kawai, R. & Gotoh, K. Recyclable Pd-graphene catalyst: mechanistic insights into heterogeneous and homogeneous catalysis. RSC Advances 2, 9380–9382 (2012). es_ES
dc.relation.references Esfandiari, N. M. & Blum, S. A. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy. J. Am.Chem. Soc. 133, 18145–18147 (2011). es_ES
dc.relation.references Hensle, E. M. & Blum, S. A. Phase separation polymerization of dicyclopentadiene characterized by in operando fluorescence microscopy. J. Am.Chem. Soc. 135, 12324–12328 (2013). es_ES
dc.relation.references De Cremer, G. et al. High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. Angew. Chem. Int. Ed. 49, 908–911 (2010). es_ES
dc.relation.references Roeffaers, M. B. J. et al. Super-resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. 48, 9285–9289 (2009). es_ES
dc.relation.references Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006). es_ES
dc.relation.references Xu, W., Kong, J. S., Yeh, Y.-T.E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992–996 (2008). es_ES
dc.relation.references Zhou, X., Xu, W., Liu, G., Panda, D. & Chen, P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am.Chem. Soc. 132, 138–146 (2010). es_ES
dc.relation.references Zhou, X. et al. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 7, 237–241 (2012). es_ES
dc.relation.references Chen, P. et al. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560–4570 (2010). es_ES
dc.relation.references Chen, P. et al. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 43, 1107–1117 (2014). es_ES
dc.relation.references Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012). es_ES
dc.relation.references Cordes, T. & Blum, S. A. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat. Chem. 5, 993–999 (2013). es_ES
dc.relation.references Zhou, X., Choudhary, E., Andoy, N. M., Zou, N. & Chen, P. Scalable parallel screening of catalyst activity at the single-particle level and subdiffraction resolution. ACS Catal. 3, 1448–1453 (2013). es_ES
dc.relation.references Esfandiari, N. M. et al. Single-molecule imaging of platinum ligand exchange reaction reveals reactivity distribution. J. Am. Chem. Soc. 132, 15167–15169 (2010). es_ES
dc.relation.references Wee, T., Schmidt, L. C. & Scaiano, J. C. Photooxidation of 9-anthraldehyde catalyzed by gold nanoparticles: solution and single nanoparticle studies using fluorescence lifetime imaging. J. Phys. Chem. C 116, 24373–24379 (2012). es_ES
dc.relation.references Fiolka, R., Belyaev, Y., Ewers, H. & Stemmer, A. Even illumination in total internal reflection fluorescence microscopy using laser light. Microsc. Res. Tech. 71, 45–50 (2007). es_ES
dc.relation.references Canham, S. M. et al. Toward the single-molecule investigation of organometallic reaction mechanisms: single-molecule imaging of fluorophore-tagged palladium(II) complexes. Organometallics 27, 2172–2175 (2008). es_ES
dc.relation.references Jares-Erijman, E. & Jovin, T. FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003). es_ES
dc.relation.references Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008). es_ES
dc.relation.references Kasper, L. et al. Probing the free-energy surface for protein folding with single-molecule spectroscopy. Nature 419, 743–747 (2002). es_ES
dc.relation.references Chung, H., Louis, J. & Eaton, W. Distinguishing between protein dynamics and dye photophysics in single-molecule FRET experiments. Biophys. J. 98, 696–706 (2010). es_ES
dc.relation.references Hohlbein, J., Craggs, T. & Cordes, T. Alternating-laser excitation: single-molecule FRET and beyond. Chem. Soc. Rev. 43, 1156–1171 (2014). es_ES
dc.relation.references Greenleaf, W. J., Woodside, M. T. & Block, S. M. High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36, 171–190 (2007). es_ES
dc.relation.references Di Fiori, N. & Meller, A. The effect of dye-dye interactions on the spatial resolution of single-molecule FRET measurements in nucleic acids. Biophys. J. 98, 2265–2272. es_ES
dc.relation.references Ahlquist, M. r. & Fokin, V. Enhanced reactivity of dinuclear copper(I) acetylides in dipolar cycloadditions. Organometallics 26, 4389–4391 (2007). es_ES
dc.relation.references Straub, B. μ-Acetylide and μ-alkenylidene ligands in ‘click’ triazole syntheses. Chem. Commun. 37, 3868–3870 (2007). es_ES


This item appears in the following Collection(s)

Show simple item record