Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).
Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).
Hein, J. & Fokin, V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 39, 1302–1315 (2010).
[+]
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).
Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).
Hein, J. & Fokin, V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 39, 1302–1315 (2010).
Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004 (2001).
Meldal, M. & Tornoe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).
Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).
Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical—biology applications. Chem. Rev. 113, 4905–4979 (2013).
Cintas, P., Barge, A., Tagliapietra, S., Boffa, L. & Cravotto, G. Alkyne–azide click reaction catalyzed by metallic copper under ultrasound. Nat. Protoc. 5, 607–616 (2010).
Hong, V., Presolski, S., Ma, C. & Finn, M. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48, 9879–9883 (2009).
Kappe, C. & Van Der Eycken, E. Click chemistry under non-classical reaction conditions. Chem. Soc. Rev. 39, 1280–1290 (2010).
Pachón, L., Van Maarseveen, J. & Rothenberg, G. Click chemistry: copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv. Synth. Catal. 347, 811–815 (2005).
Adzima, B. et al. Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(II) reduction. Nat. Chem. 3, 258–261 (2011).
Jin, T., Yan, M. & Yamamoto, Y. Click chemistry of alkyne-azide cycloaddition using nanostructured copper catalysts. ChemCatChem 4, 1217–1229 (2012).
Woo, H. et al. Azide-alkyne Huisgen [3+2] cycloaddition using CuO nanoparticles. Molecules 17, 13235–13252 (2012).
Rance, G., Solomonsz, W. & Khlobystov, A. Click chemistry in carbon nanoreactors. Chem. Commun. 49, 1067–1069 (2013).
Alonso, F., Moglie, Y., Radivoy, G. & Yus, M. Unsupported copper nanoparticles in the 1,3-dipolar cycloaddition of terminal alkynes and azides. Eur. J. Org. Chem. 10, 1875–1884 (2010).
Alonso, F., Moglie, Y., Radivoy, G. & Yus, M. Multicomponent synthesis of 1,2,3-triazoles in water catalyzed by copper nanoparticles on activated carbon. Adv. Synth. Catal. 352, 3208–3214 (2010).
Raut, D. et al. Copper nanoparticles in ionic liquids: Recyclable and efficient catalytic system for 1,3-dipolar cycloaddition reaction. Catal. Commun. 10, 1240–1243 (2009).
Kumar, B. S. P. A., Reddy, K. H. V., Madhav, B., Ramesh, K. & Nageswar, Y. V. D. Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using ‘click chemistry’. Tetrahedron Lett. 53, 4595–4599 (2012).
Hudson, R., Li, C. & Moores, A. Magnetic copper–iron nanoparticles as simple heterogeneous catalysts for the azide–alkyne click reaction in water. Green Chem. 14, 622–624 (2012).
Sarkar, A., Mukherjee, T. & Kapoor, S. PVP-stabilized copper nanoparticles: a reusable catalyst for ‘click’ reaction between terminal alkynes and azides in nonaqueous solvents. J. Phys. Chem. C 112, 3334–3340 (2008).
Pacioni, N. L., Filippenko, V., Presseau, N. & Scaiano, J. C. Oxidation of copper nanoparticles in water: mechanistic insights revealed by oxygen uptake and spectroscopic methods. Dalton Trans. 42, 5832–5838 (2013).
Davies, I. W., Matty, L., Hughes, D. L. & Reider, P. J. Are heterogeneous catalysts precursors to homogeneous catalysts? J. Am.Chem. Soc. 123, 10139–10140 (2001).
Witham, C. A. et al. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat. Chem. 2, 36–41 (2010).
Schmidt, A. F. & Kurokhtina, A. A. Distinguishing between the homogeneous and heterogeneous mechanisms of catalysis in the Mizoroki-Heck and Suzuki-Miyaura reactions: problems and prospects. Kinet. Catal. 53, 714–730 (2012).
Nishina, Y., Miyata, J., Kawai, R. & Gotoh, K. Recyclable Pd-graphene catalyst: mechanistic insights into heterogeneous and homogeneous catalysis. RSC Advances 2, 9380–9382 (2012).
Esfandiari, N. M. & Blum, S. A. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy. J. Am.Chem. Soc. 133, 18145–18147 (2011).
Hensle, E. M. & Blum, S. A. Phase separation polymerization of dicyclopentadiene characterized by in operando fluorescence microscopy. J. Am.Chem. Soc. 135, 12324–12328 (2013).
De Cremer, G. et al. High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. Angew. Chem. Int. Ed. 49, 908–911 (2010).
Roeffaers, M. B. J. et al. Super-resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. 48, 9285–9289 (2009).
Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).
Xu, W., Kong, J. S., Yeh, Y.-T.E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992–996 (2008).
Zhou, X., Xu, W., Liu, G., Panda, D. & Chen, P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am.Chem. Soc. 132, 138–146 (2010).
Zhou, X. et al. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 7, 237–241 (2012).
Chen, P. et al. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560–4570 (2010).
Chen, P. et al. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 43, 1107–1117 (2014).
Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).
Cordes, T. & Blum, S. A. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat. Chem. 5, 993–999 (2013).
Zhou, X., Choudhary, E., Andoy, N. M., Zou, N. & Chen, P. Scalable parallel screening of catalyst activity at the single-particle level and subdiffraction resolution. ACS Catal. 3, 1448–1453 (2013).
Esfandiari, N. M. et al. Single-molecule imaging of platinum ligand exchange reaction reveals reactivity distribution. J. Am. Chem. Soc. 132, 15167–15169 (2010).
Wee, T., Schmidt, L. C. & Scaiano, J. C. Photooxidation of 9-anthraldehyde catalyzed by gold nanoparticles: solution and single nanoparticle studies using fluorescence lifetime imaging. J. Phys. Chem. C 116, 24373–24379 (2012).
Fiolka, R., Belyaev, Y., Ewers, H. & Stemmer, A. Even illumination in total internal reflection fluorescence microscopy using laser light. Microsc. Res. Tech. 71, 45–50 (2007).
Canham, S. M. et al. Toward the single-molecule investigation of organometallic reaction mechanisms: single-molecule imaging of fluorophore-tagged palladium(II) complexes. Organometallics 27, 2172–2175 (2008).
Jares-Erijman, E. & Jovin, T. FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003).
Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).
Kasper, L. et al. Probing the free-energy surface for protein folding with single-molecule spectroscopy. Nature 419, 743–747 (2002).
Chung, H., Louis, J. & Eaton, W. Distinguishing between protein dynamics and dye photophysics in single-molecule FRET experiments. Biophys. J. 98, 696–706 (2010).
Hohlbein, J., Craggs, T. & Cordes, T. Alternating-laser excitation: single-molecule FRET and beyond. Chem. Soc. Rev. 43, 1156–1171 (2014).
Greenleaf, W. J., Woodside, M. T. & Block, S. M. High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36, 171–190 (2007).
Di Fiori, N. & Meller, A. The effect of dye-dye interactions on the spatial resolution of single-molecule FRET measurements in nucleic acids. Biophys. J. 98, 2265–2272.
Ahlquist, M. r. & Fokin, V. Enhanced reactivity of dinuclear copper(I) acetylides in dipolar cycloadditions. Organometallics 26, 4389–4391 (2007).
Straub, B. μ-Acetylide and μ-alkenylidene ligands in ‘click’ triazole syntheses. Chem. Commun. 37, 3868–3870 (2007).
[-]