- -

One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars

Mostrar el registro completo del ítem

Gaona Cordero, A.; Moreno, JM.; Velty, A.; Díaz Morales, UM.; Corma Canós, A. (2014). One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars. Journal of Materials Chemistry A. 2(45):19360-19375. https://doi.org/10.1039/c4ta04742g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61404

Ficheros en el ítem

Metadatos del ítem

Título: One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars
Autor: Gaona Cordero, Aide Moreno, José María Velty, Alexandra Díaz Morales, Urbano Manuel Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Layered hybrid materials (LHMs) based on ordered silicoaluminate sheets linked with organic fragments, perpendicularly located and stabilized in the interlayer space, were synthesized by a one-pot direct hydrothermal process ...[+]
Palabras clave: Lamellar materials , Hybrid solids , One-pot synthesis , Disilanes , C-C bond forming reactions
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Materials Chemistry A. (issn: 2050-7496 )
DOI: 10.1039/c4ta04742g
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c4ta04742g
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
info:eu-repo/grantAgreement/MINECO//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/
Agradecimientos:
The authors thank financial support to Spanish Government by Consolider-Ingenio MULTICAT CSD2009-00050, MAT2011-29020-C02-01 and Severo Ochoa Excellence Program SEV-2012-0267. AG and JMM thank pre-doctoral fellowships from ...[+]
Tipo: Artículo

References

Fontecave, T., Sanchez, C., Azaïs, T., & Boissière, C. (2012). Chemical Modification As a Versatile Tool for Tuning Stability of Silica Based Mesoporous Carriers in Biologically Relevant Conditions. Chemistry of Materials, 24(22), 4326-4336. doi:10.1021/cm302142k

Drisko, G. L., & Sanchez, C. (2012). Hybridization in Materials Science - Evolution, Current State, and Future Aspirations. European Journal of Inorganic Chemistry, 2012(32), 5097-5105. doi:10.1002/ejic.201201216

Nicole, L., Laberty-Robert, C., Rozes, L., & Sanchez, C. (2014). Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 6(12), 6267-6292. doi:10.1039/c4nr01788a [+]
Fontecave, T., Sanchez, C., Azaïs, T., & Boissière, C. (2012). Chemical Modification As a Versatile Tool for Tuning Stability of Silica Based Mesoporous Carriers in Biologically Relevant Conditions. Chemistry of Materials, 24(22), 4326-4336. doi:10.1021/cm302142k

Drisko, G. L., & Sanchez, C. (2012). Hybridization in Materials Science - Evolution, Current State, and Future Aspirations. European Journal of Inorganic Chemistry, 2012(32), 5097-5105. doi:10.1002/ejic.201201216

Nicole, L., Laberty-Robert, C., Rozes, L., & Sanchez, C. (2014). Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 6(12), 6267-6292. doi:10.1039/c4nr01788a

Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075

Sanchez, C., Boissiere, C., Cassaignon, S., Chaneac, C., Durupthy, O., Faustini, M., … Sassoye, C. (2013). Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials, 26(1), 221-238. doi:10.1021/cm402528b

Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k

Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j

Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248

Ruiz-Hitzky, E., Darder, M., & Aranda, P. (2005). Functional biopolymer nanocomposites based on layered solids. Journal of Materials Chemistry, 15(35-36), 3650. doi:10.1039/b505640n

Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910

Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22(1), 43-51. doi:10.1016/0167-2738(86)90057-3

Corma, A., Corell, C., Pérez-Pariente, J., Guil, J. M., Guil-López, R., Nicolopoulos, S., … Vallet-Regi, M. (1996). Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites, 16(1), 7-14. doi:10.1016/0144-2449(95)00084-4

Occelli, M. L. (1983). Physicochemical Properties of Montmorillonite Interlayered with Cationic Oxyaluminum Pillars. Clays and Clay Minerals, 31(1), 22-28. doi:10.1346/ccmn.1983.0310104

Srivastava, V., Gaubert, K., Pucheault, M., & Vaultier, M. (2009). Organic-Inorganic Hybrid Materials for Enantioselective Organocatalysis. ChemCatChem, 1(1), 94-98. doi:10.1002/cctc.200900035

Motokura, K., Tada, M., & Iwasawa, Y. (2009). Layered Materials with Coexisting Acidic and Basic Sites for Catalytic One-Pot Reaction Sequences. Journal of the American Chemical Society, 131(23), 7944-7945. doi:10.1021/ja9012003

Baleizão, C., Gigante, B., Sabater, M. J., Garcia, H., & Corma, A. (2002). On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. Applied Catalysis A: General, 228(1-2), 279-288. doi:10.1016/s0926-860x(01)00979-6

Ayala, V., Corma, A., Iglesias, M., Rincón, J. A., & Sánchez, F. (2004). Hybrid organic—inorganic catalysts: a cooperative effect between support, and palladium and nickel salen complexes on catalytic hydrogenation of imines. Journal of Catalysis, 224(1), 170-177. doi:10.1016/j.jcat.2004.02.017

Corma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:1<71::aid-adma71>3.0.co;2-w

Ishii, R., Ikeda, T., Itoh, T., Ebina, T., Yokoyama, T., Hanaoka, T., & Mizukami, F. (2006). Synthesis of new microporous layered organic–inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite. J. Mater. Chem., 16(41), 4035-4043. doi:10.1039/b610088k

Mochizuki, D., Kowata, S., & Kuroda, K. (2006). Synthesis of Microporous Inorganic−Organic Hybrids from Layered Octosilicate by Silylation with 1,4-Bis(trichloro- and dichloromethyl-silyl)benzenes. Chemistry of Materials, 18(22), 5223-5229. doi:10.1021/cm061357q

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z

Shiju, N. R., Alberts, A. H., Khalid, S., Brown, D. R., & Rothenberg, G. (2011). Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions. Angewandte Chemie International Edition, 50(41), 9615-9619. doi:10.1002/anie.201101449

Shylesh, S., Wagener, A., Seifert, A., Ernst, S., & Thiel, W. R. (2009). Mesoporous Organosilicas with Acidic Frameworks and Basic Sites in the Pores: An Approach to Cooperative Catalytic Reactions. Angewandte Chemie International Edition, 49(1), 184-187. doi:10.1002/anie.200903985

Opanasenko, M., Parker, W. O., Shamzhy, M., Montanari, E., Bellettato, M., Mazur, M., … Čejka, J. (2014). Hierarchical Hybrid Organic–Inorganic Materials with Tunable Textural Properties Obtained Using Zeolitic-Layered Precursor. Journal of the American Chemical Society, 136(6), 2511-2519. doi:10.1021/ja410844f

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130

González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Pd(II)-Schiff Base Complexes Heterogenised on MCM-41 and Delaminated Zeolites as Efficient and Recyclable Catalysts for the Heck Reaction. Advanced Synthesis & Catalysis, 346(13-15), 1758-1764. doi:10.1002/adsc.200404119

Corma, A., Gutiérrez-Puebla, E., Iglesias, M., Monge, A., Pérez-Ferreras, S., & Sánchez, F. (2006). New Heterogenized Gold(I)-Heterocyclic Carbene Complexes as Reusable Catalysts in Hydrogenation and Cross-Coupling Reactions. Advanced Synthesis & Catalysis, 348(14), 1899-1907. doi:10.1002/adsc.200606163

Barth, J.-O., Kornatowski, J., & Lercher*, J. A. (2002). Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 12(2), 369-373. doi:10.1039/b104824b

Alauzun, J., Mehdi, A., Mouawia, R., Reyé, C., & Corriu, R. J. P. (2008). Synthesis of new lamellar materials by self-assembly and coordination chemistry in the solids. Journal of Sol-Gel Science and Technology, 46(3), 383-392. doi:10.1007/s10971-008-1710-7

Moreau, J. J. E., Vellutini, L., Wong Chi Man, M., & Bied, C. (2001). New Hybrid Organic−Inorganic Solids with Helical Morphology via H-Bond Mediated Sol−Gel Hydrolysis of Silyl Derivatives of Chiral (R,R)- or (S,S)-Diureidocyclohexane. Journal of the American Chemical Society, 123(7), 1509-1510. doi:10.1021/ja003843z

Moreau, J. J. E., Pichon, B. P., Wong Chi Man, M., Bied, C., Pritzkow, H., Bantignies, J.-L., … Sauvajol, J.-L. (2004). A Better Understanding of the Self-Structuration of Bridged Silsesquioxanes. Angewandte Chemie International Edition, 43(2), 203-206. doi:10.1002/anie.200352485

Bellussi, G., Millini, R., Montanari, E., Carati, A., Rizzo, C., Parker, W. O., … Zanardi, S. (2012). A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 48(59), 7356. doi:10.1039/c2cc33417h

Bellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., Rizzo, C., & Zanardi, S. (2008). Crystalline hybrid organic–inorganic alumino-silicates. Microporous and Mesoporous Materials, 113(1-3), 252-260. doi:10.1016/j.micromeso.2007.11.024

Zanardi, S., Bellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., & Rizzo, C. (2008). On the crystal structure solution and characterization of ECS-2, a novel microporous hybrid organic-inorganic material. Studies in Surface Science and Catalysis, 965-968. doi:10.1016/s0167-2991(08)80050-x

Bellussi, G., Montanari, E., Di Paola, E., Millini, R., Carati, A., Rizzo, C., … Zanardi, S. (2011). ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie International Edition, 51(3), 666-669. doi:10.1002/anie.201105496

Zanardi, S., Parker, W. O., Carati, A., Botti, G., & Montanari, E. (2013). On the thermal behaviour of the crystalline hybrid organic–inorganic aluminosilicate ECS-3. Microporous and Mesoporous Materials, 172, 200-205. doi:10.1016/j.micromeso.2013.01.029

Bellettato, M., Bonoldi, L., Cruciani, G., Flego, C., Guidetti, S., Millini, R., … Zanardi, S. (2014). Flexible Structure of a Thermally Stable Hybrid Aluminosilicate Built with Only the Three-Ring Unit. The Journal of Physical Chemistry C, 118(14), 7458-7467. doi:10.1021/jp5005133

S. J. Gregg and K. S. W.Sing, Adsorption, Surface Area and Porosity, Academic Press, London, 1982, pp. 111–190

Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126

Dailey, J. S., & Pinnavaia, T. J. (1992). Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica. Chemistry of Materials, 4(4), 855-863. doi:10.1021/cm00022a022

Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007

Brenn, U., Ernst, H., Freude, D., Herrmann, R., Jähnig, R., Karge, H. ., … Schwieger, W. (2000). Synthesis and characterization of the layered sodium silicate ilerite. Microporous and Mesoporous Materials, 40(1-3), 43-52. doi:10.1016/s1387-1811(00)00241-9

Fletcher, R. A. (1987). Synthesis of Kenyaite and Magadiite in the Presence of Various Anions. Clays and Clay Minerals, 35(4), 318-320. doi:10.1346/ccmn.1987.0350410

Mochizuki, D., Shimojima, A., Imagawa, T., & Kuroda, K. (2005). Molecular Manipulation of Two- and Three-Dimensional Silica Nanostructures by Alkoxysilylation of a Layered Silicate Octosilicate and Subsequent Hydrolysis of Alkoxy Groups. Journal of the American Chemical Society, 127(19), 7183-7191. doi:10.1021/ja042194e

Blake, A. J., Franklin, K. R., & Lowe, B. M. (1988). Preparation and properties of piperazine silicate (EU-19) and a silica polymorph (EU-20). Journal of the Chemical Society, Dalton Transactions, (10), 2513. doi:10.1039/dt9880002513

Schreyeck, L., Caullet, P., Mougenel, J.-C., Guth, J.-L., & Marler, B. (1995). A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society, Chemical Communications, (21), 2187. doi:10.1039/c39950002187

Yoshina-Ishii, C., Asefa, T., Coombs, N., MacLachlan, M. J., & Ozin, G. A. (1999). Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry ‘inside’ the channel walls of hexagonal mesoporous silica. Chemical Communications, (24), 2539-2540. doi:10.1039/a908252b

Zhou, D., Luo, X.-B., Zhang, H.-L., Dong, C., Xia, Q.-H., Liu, Z.-M., & Deng, F. (2009). Synthesis and characterization of organic-functionalized molecular sieves Ph-SAPO-5 and Ph-SAPO-11. Microporous and Mesoporous Materials, 121(1-3), 194-199. doi:10.1016/j.micromeso.2009.01.033

Poli, E., Merino, E., Díaz, U., Brunel, D., & Corma, A. (2011). Si–C attachment points during sol–gel synthesis of organosilicas from 2,8-bis-silylated Tröger’s base as building block precursor. Journal of Materials Chemistry, 21(24), 8524. doi:10.1039/c1jm10426h

Van Bokhoven, J. A., Roest, A. L., Koningsberger, D. C., Miller, J. T., Nachtegaal, G. H., & Kentgens, A. P. M. (2000). Changes in Structural and Electronic Properties of the Zeolite Framework Induced by Extraframework Al and La in H-USY and La(x)NaY:  A29Si and27Al MAS NMR and27Al MQ MAS NMR Study. The Journal of Physical Chemistry B, 104(29), 6743-6754. doi:10.1021/jp000147c

L. J. Bellamy , Advances in infrared group frequencies, Chapman and Hall, London, 1968

Rodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3

CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027

Prout, F. S., Beaucaire, V. D., Dyrkacz, G. R., Koppes, W. M., Kuznicki, R. E., Marlewski, T. A., … Puda, J. M. (1973). Konevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile. The Journal of Organic Chemistry, 38(8), 1512-1517. doi:10.1021/jo00948a015

Guyot, J., & Kergomard, A. (1983). Cinétique et mécanisme de la réaction de knoevenagel dans le benzène-2. Tetrahedron, 39(7), 1167-1179. doi:10.1016/s0040-4020(01)91880-0

Xu, L., Li, C., Zhang, K., & Wu, P. (2014). Bifunctional Tandem Catalysis on Multilamellar Organic–Inorganic Hybrid Zeolites. ACS Catalysis, 4(9), 2959-2968. doi:10.1021/cs500653p

PINE, L. (1984). Prediction of cracking catalyst behavior by a zeolite unit cell size model. Journal of Catalysis, 85(2), 466-476. doi:10.1016/0021-9517(84)90235-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem