- -

One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gaona Cordero, Aide es_ES
dc.contributor.author Moreno, José María es_ES
dc.contributor.author Velty, Alexandra es_ES
dc.contributor.author Díaz Morales, Urbano Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2016-03-03T12:26:37Z
dc.date.available 2016-03-03T12:26:37Z
dc.date.issued 2014
dc.identifier.issn 2050-7496
dc.identifier.uri http://hdl.handle.net/10251/61404
dc.description.abstract Layered hybrid materials (LHMs) based on ordered silicoaluminate sheets linked with organic fragments, perpendicularly located and stabilized in the interlayer space, were synthesized by a one-pot direct hydrothermal process in the absence of structural directing agents (SDAs) and using bridged silsesquioxanes as organosilicon precursors. By following the synthesis described here, the preliminary preparation of inorganic layered precursors, post-synthesis swelling and/or pillaring treatments can be avoided. The physico-chemical and structural characteristics of the materials were studied by chemical and thermogravimetrical analyses, X-ray diffraction, TEM microscopy, spectroscopic techniques (NMR and FTIR) and textural measurements. The complete exchange of intracrystalline sodium cations by protons, without substantial structural alteration of the hybrid materials, facilitated the generation of hybrid materials, which contained acid and base sites located in the inorganic (silicoaluminate layers) and in the organic interlayer linkers, respectively, with the resultant acid base materials showing promise as active and selective catalysts. es_ES
dc.description.sponsorship The authors thank financial support to Spanish Government by Consolider-Ingenio MULTICAT CSD2009-00050, MAT2011-29020-C02-01 and Severo Ochoa Excellence Program SEV-2012-0267. AG and JMM thank pre-doctoral fellowships from MINECO for economical support. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Journal of Materials Chemistry A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Lamellar materials es_ES
dc.subject Hybrid solids es_ES
dc.subject One-pot synthesis es_ES
dc.subject Disilanes es_ES
dc.subject C-C bond forming reactions es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4ta04742g
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gaona Cordero, A.; Moreno, JM.; Velty, A.; Díaz Morales, UM.; Corma Canós, A. (2014). One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars. Journal of Materials Chemistry A. 2(45):19360-19375. https://doi.org/10.1039/c4ta04742g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c4ta04742g es_ES
dc.description.upvformatpinicio 19360 es_ES
dc.description.upvformatpfin 19375 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 45 es_ES
dc.relation.senia 285684 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Fontecave, T., Sanchez, C., Azaïs, T., & Boissière, C. (2012). Chemical Modification As a Versatile Tool for Tuning Stability of Silica Based Mesoporous Carriers in Biologically Relevant Conditions. Chemistry of Materials, 24(22), 4326-4336. doi:10.1021/cm302142k es_ES
dc.description.references Drisko, G. L., & Sanchez, C. (2012). Hybridization in Materials Science - Evolution, Current State, and Future Aspirations. European Journal of Inorganic Chemistry, 2012(32), 5097-5105. doi:10.1002/ejic.201201216 es_ES
dc.description.references Nicole, L., Laberty-Robert, C., Rozes, L., & Sanchez, C. (2014). Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 6(12), 6267-6292. doi:10.1039/c4nr01788a es_ES
dc.description.references Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m es_ES
dc.description.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.description.references Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 es_ES
dc.description.references Sanchez, C., Boissiere, C., Cassaignon, S., Chaneac, C., Durupthy, O., Faustini, M., … Sassoye, C. (2013). Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials, 26(1), 221-238. doi:10.1021/cm402528b es_ES
dc.description.references Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k es_ES
dc.description.references Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j es_ES
dc.description.references Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 es_ES
dc.description.references Ruiz-Hitzky, E., Darder, M., & Aranda, P. (2005). Functional biopolymer nanocomposites based on layered solids. Journal of Materials Chemistry, 15(35-36), 3650. doi:10.1039/b505640n es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 es_ES
dc.description.references Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22(1), 43-51. doi:10.1016/0167-2738(86)90057-3 es_ES
dc.description.references Corma, A., Corell, C., Pérez-Pariente, J., Guil, J. M., Guil-López, R., Nicolopoulos, S., … Vallet-Regi, M. (1996). Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites, 16(1), 7-14. doi:10.1016/0144-2449(95)00084-4 es_ES
dc.description.references Occelli, M. L. (1983). Physicochemical Properties of Montmorillonite Interlayered with Cationic Oxyaluminum Pillars. Clays and Clay Minerals, 31(1), 22-28. doi:10.1346/ccmn.1983.0310104 es_ES
dc.description.references Srivastava, V., Gaubert, K., Pucheault, M., & Vaultier, M. (2009). Organic-Inorganic Hybrid Materials for Enantioselective Organocatalysis. ChemCatChem, 1(1), 94-98. doi:10.1002/cctc.200900035 es_ES
dc.description.references Motokura, K., Tada, M., & Iwasawa, Y. (2009). Layered Materials with Coexisting Acidic and Basic Sites for Catalytic One-Pot Reaction Sequences. Journal of the American Chemical Society, 131(23), 7944-7945. doi:10.1021/ja9012003 es_ES
dc.description.references Baleizão, C., Gigante, B., Sabater, M. J., Garcia, H., & Corma, A. (2002). On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. Applied Catalysis A: General, 228(1-2), 279-288. doi:10.1016/s0926-860x(01)00979-6 es_ES
dc.description.references Ayala, V., Corma, A., Iglesias, M., Rincón, J. A., & Sánchez, F. (2004). Hybrid organic—inorganic catalysts: a cooperative effect between support, and palladium and nickel salen complexes on catalytic hydrogenation of imines. Journal of Catalysis, 224(1), 170-177. doi:10.1016/j.jcat.2004.02.017 es_ES
dc.description.references Corma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:1<71::aid-adma71>3.0.co;2-w es_ES
dc.description.references Ishii, R., Ikeda, T., Itoh, T., Ebina, T., Yokoyama, T., Hanaoka, T., & Mizukami, F. (2006). Synthesis of new microporous layered organic–inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite. J. Mater. Chem., 16(41), 4035-4043. doi:10.1039/b610088k es_ES
dc.description.references Mochizuki, D., Kowata, S., & Kuroda, K. (2006). Synthesis of Microporous Inorganic−Organic Hybrids from Layered Octosilicate by Silylation with 1,4-Bis(trichloro- and dichloromethyl-silyl)benzenes. Chemistry of Materials, 18(22), 5223-5229. doi:10.1021/cm061357q es_ES
dc.description.references Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z es_ES
dc.description.references Shiju, N. R., Alberts, A. H., Khalid, S., Brown, D. R., & Rothenberg, G. (2011). Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions. Angewandte Chemie International Edition, 50(41), 9615-9619. doi:10.1002/anie.201101449 es_ES
dc.description.references Shylesh, S., Wagener, A., Seifert, A., Ernst, S., & Thiel, W. R. (2009). Mesoporous Organosilicas with Acidic Frameworks and Basic Sites in the Pores: An Approach to Cooperative Catalytic Reactions. Angewandte Chemie International Edition, 49(1), 184-187. doi:10.1002/anie.200903985 es_ES
dc.description.references Opanasenko, M., Parker, W. O., Shamzhy, M., Montanari, E., Bellettato, M., Mazur, M., … Čejka, J. (2014). Hierarchical Hybrid Organic–Inorganic Materials with Tunable Textural Properties Obtained Using Zeolitic-Layered Precursor. Journal of the American Chemical Society, 136(6), 2511-2519. doi:10.1021/ja410844f es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130 es_ES
dc.description.references González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Pd(II)-Schiff Base Complexes Heterogenised on MCM-41 and Delaminated Zeolites as Efficient and Recyclable Catalysts for the Heck Reaction. Advanced Synthesis & Catalysis, 346(13-15), 1758-1764. doi:10.1002/adsc.200404119 es_ES
dc.description.references Corma, A., Gutiérrez-Puebla, E., Iglesias, M., Monge, A., Pérez-Ferreras, S., & Sánchez, F. (2006). New Heterogenized Gold(I)-Heterocyclic Carbene Complexes as Reusable Catalysts in Hydrogenation and Cross-Coupling Reactions. Advanced Synthesis & Catalysis, 348(14), 1899-1907. doi:10.1002/adsc.200606163 es_ES
dc.description.references Barth, J.-O., Kornatowski, J., & Lercher*, J. A. (2002). Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 12(2), 369-373. doi:10.1039/b104824b es_ES
dc.description.references Alauzun, J., Mehdi, A., Mouawia, R., Reyé, C., & Corriu, R. J. P. (2008). Synthesis of new lamellar materials by self-assembly and coordination chemistry in the solids. Journal of Sol-Gel Science and Technology, 46(3), 383-392. doi:10.1007/s10971-008-1710-7 es_ES
dc.description.references Moreau, J. J. E., Vellutini, L., Wong Chi Man, M., & Bied, C. (2001). New Hybrid Organic−Inorganic Solids with Helical Morphology via H-Bond Mediated Sol−Gel Hydrolysis of Silyl Derivatives of Chiral (R,R)- or (S,S)-Diureidocyclohexane. Journal of the American Chemical Society, 123(7), 1509-1510. doi:10.1021/ja003843z es_ES
dc.description.references Moreau, J. J. E., Pichon, B. P., Wong Chi Man, M., Bied, C., Pritzkow, H., Bantignies, J.-L., … Sauvajol, J.-L. (2004). A Better Understanding of the Self-Structuration of Bridged Silsesquioxanes. Angewandte Chemie International Edition, 43(2), 203-206. doi:10.1002/anie.200352485 es_ES
dc.description.references Bellussi, G., Millini, R., Montanari, E., Carati, A., Rizzo, C., Parker, W. O., … Zanardi, S. (2012). A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 48(59), 7356. doi:10.1039/c2cc33417h es_ES
dc.description.references Bellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., Rizzo, C., & Zanardi, S. (2008). Crystalline hybrid organic–inorganic alumino-silicates. Microporous and Mesoporous Materials, 113(1-3), 252-260. doi:10.1016/j.micromeso.2007.11.024 es_ES
dc.description.references Zanardi, S., Bellussi, G., Carati, A., Di Paola, E., Millini, R., Parker, W. O., & Rizzo, C. (2008). On the crystal structure solution and characterization of ECS-2, a novel microporous hybrid organic-inorganic material. Studies in Surface Science and Catalysis, 965-968. doi:10.1016/s0167-2991(08)80050-x es_ES
dc.description.references Bellussi, G., Montanari, E., Di Paola, E., Millini, R., Carati, A., Rizzo, C., … Zanardi, S. (2011). ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie International Edition, 51(3), 666-669. doi:10.1002/anie.201105496 es_ES
dc.description.references Zanardi, S., Parker, W. O., Carati, A., Botti, G., & Montanari, E. (2013). On the thermal behaviour of the crystalline hybrid organic–inorganic aluminosilicate ECS-3. Microporous and Mesoporous Materials, 172, 200-205. doi:10.1016/j.micromeso.2013.01.029 es_ES
dc.description.references Bellettato, M., Bonoldi, L., Cruciani, G., Flego, C., Guidetti, S., Millini, R., … Zanardi, S. (2014). Flexible Structure of a Thermally Stable Hybrid Aluminosilicate Built with Only the Three-Ring Unit. The Journal of Physical Chemistry C, 118(14), 7458-7467. doi:10.1021/jp5005133 es_ES
dc.description.references S. J. Gregg and K. S. W.Sing, Adsorption, Surface Area and Porosity, Academic Press, London, 1982, pp. 111–190 es_ES
dc.description.references Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603 es_ES
dc.description.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES
dc.description.references Dailey, J. S., & Pinnavaia, T. J. (1992). Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica. Chemistry of Materials, 4(4), 855-863. doi:10.1021/cm00022a022 es_ES
dc.description.references Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007 es_ES
dc.description.references Brenn, U., Ernst, H., Freude, D., Herrmann, R., Jähnig, R., Karge, H. ., … Schwieger, W. (2000). Synthesis and characterization of the layered sodium silicate ilerite. Microporous and Mesoporous Materials, 40(1-3), 43-52. doi:10.1016/s1387-1811(00)00241-9 es_ES
dc.description.references Fletcher, R. A. (1987). Synthesis of Kenyaite and Magadiite in the Presence of Various Anions. Clays and Clay Minerals, 35(4), 318-320. doi:10.1346/ccmn.1987.0350410 es_ES
dc.description.references Mochizuki, D., Shimojima, A., Imagawa, T., & Kuroda, K. (2005). Molecular Manipulation of Two- and Three-Dimensional Silica Nanostructures by Alkoxysilylation of a Layered Silicate Octosilicate and Subsequent Hydrolysis of Alkoxy Groups. Journal of the American Chemical Society, 127(19), 7183-7191. doi:10.1021/ja042194e es_ES
dc.description.references Blake, A. J., Franklin, K. R., & Lowe, B. M. (1988). Preparation and properties of piperazine silicate (EU-19) and a silica polymorph (EU-20). Journal of the Chemical Society, Dalton Transactions, (10), 2513. doi:10.1039/dt9880002513 es_ES
dc.description.references Schreyeck, L., Caullet, P., Mougenel, J.-C., Guth, J.-L., & Marler, B. (1995). A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society, Chemical Communications, (21), 2187. doi:10.1039/c39950002187 es_ES
dc.description.references Yoshina-Ishii, C., Asefa, T., Coombs, N., MacLachlan, M. J., & Ozin, G. A. (1999). Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry ‘inside’ the channel walls of hexagonal mesoporous silica. Chemical Communications, (24), 2539-2540. doi:10.1039/a908252b es_ES
dc.description.references Zhou, D., Luo, X.-B., Zhang, H.-L., Dong, C., Xia, Q.-H., Liu, Z.-M., & Deng, F. (2009). Synthesis and characterization of organic-functionalized molecular sieves Ph-SAPO-5 and Ph-SAPO-11. Microporous and Mesoporous Materials, 121(1-3), 194-199. doi:10.1016/j.micromeso.2009.01.033 es_ES
dc.description.references Poli, E., Merino, E., Díaz, U., Brunel, D., & Corma, A. (2011). Si–C attachment points during sol–gel synthesis of organosilicas from 2,8-bis-silylated Tröger’s base as building block precursor. Journal of Materials Chemistry, 21(24), 8524. doi:10.1039/c1jm10426h es_ES
dc.description.references Van Bokhoven, J. A., Roest, A. L., Koningsberger, D. C., Miller, J. T., Nachtegaal, G. H., & Kentgens, A. P. M. (2000). Changes in Structural and Electronic Properties of the Zeolite Framework Induced by Extraframework Al and La in H-USY and La(x)NaY:  A29Si and27Al MAS NMR and27Al MQ MAS NMR Study. The Journal of Physical Chemistry B, 104(29), 6743-6754. doi:10.1021/jp000147c es_ES
dc.description.references L. J. Bellamy , Advances in infrared group frequencies, Chapman and Hall, London, 1968 es_ES
dc.description.references Rodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3 es_ES
dc.description.references CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027 es_ES
dc.description.references Prout, F. S., Beaucaire, V. D., Dyrkacz, G. R., Koppes, W. M., Kuznicki, R. E., Marlewski, T. A., … Puda, J. M. (1973). Konevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile. The Journal of Organic Chemistry, 38(8), 1512-1517. doi:10.1021/jo00948a015 es_ES
dc.description.references Guyot, J., & Kergomard, A. (1983). Cinétique et mécanisme de la réaction de knoevenagel dans le benzène-2. Tetrahedron, 39(7), 1167-1179. doi:10.1016/s0040-4020(01)91880-0 es_ES
dc.description.references Xu, L., Li, C., Zhang, K., & Wu, P. (2014). Bifunctional Tandem Catalysis on Multilamellar Organic–Inorganic Hybrid Zeolites. ACS Catalysis, 4(9), 2959-2968. doi:10.1021/cs500653p es_ES
dc.description.references PINE, L. (1984). Prediction of cracking catalyst behavior by a zeolite unit cell size model. Journal of Catalysis, 85(2), 466-476. doi:10.1016/0021-9517(84)90235-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem