G. C. F. Cavani , S.Perathoner and F.Trifiro, Sustainable Industrial Chemistry, Wiley-VHC, Weinheim, 2009
Hulea, V., Brunel, D., Galarneau, A., Philippot, K., Chaudret, B., Kooyman, P. J., & Fajula, F. (2005). Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 79(1-3), 185-194. doi:10.1016/j.micromeso.2004.10.041
Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030
[+]
G. C. F. Cavani , S.Perathoner and F.Trifiro, Sustainable Industrial Chemistry, Wiley-VHC, Weinheim, 2009
Hulea, V., Brunel, D., Galarneau, A., Philippot, K., Chaudret, B., Kooyman, P. J., & Fajula, F. (2005). Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 79(1-3), 185-194. doi:10.1016/j.micromeso.2004.10.041
Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030
Trong On, D., Desplantier-Giscard, D., Danumah, C., & Kaliaguine, S. (2001). Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A: General, 222(1-2), 299-357. doi:10.1016/s0926-860x(01)00842-0
Wu, Y., Zhang, L., Li, G., Liang, C., Huang, X., Zhang, Y., … Zhixiang, C. (2001). Synthesis and characterization of nanocomposites with palladium embedded in mesoporous silica. Materials Research Bulletin, 36(1-2), 253-263. doi:10.1016/s0025-5408(01)00494-9
Garcia-Martinez, J., Linares, N., Sinibaldi, S., Coronado, E., & Ribera, A. (2009). Incorporation of Pd nanoparticles in mesostructured silica. Microporous and Mesoporous Materials, 117(1-2), 170-177. doi:10.1016/j.micromeso.2008.06.038
Carrillo, A. I., García-Martínez, J., Llusar, R., Serrano, E., Sorribes, I., Vicent, C., & Alejandro Vidal-Moya, J. (2012). Incorporation of cubane-type Mo3S4 molybdenum cluster sulfides in the framework of mesoporous silica. Microporous and Mesoporous Materials, 151, 380-389. doi:10.1016/j.micromeso.2011.10.005
Iglesia, E., Soled, S. L., Fiato, R. A., & Via, G. H. (1993). Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis, 143(2), 345-368. doi:10.1006/jcat.1993.1281
VanderWiel, D. P., Pruski, M., & King, T. S. (1999). A Kinetic Study on the Adsorption and Reaction of Hydrogen over Silica-Supported Ruthenium and Silver–Ruthenium Catalysts during the Hydrogenation of Carbon Monoxide. Journal of Catalysis, 188(1), 186-202. doi:10.1006/jcat.1999.2646
Mazzieri, V. (2003). XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Applied Surface Science, 210(3-4), 222-230. doi:10.1016/s0169-4332(03)00146-6
Zhang, J., Xu, H., Ge, Q., & Li, W. (2006). Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect. Catalysis Communications, 7(3), 148-152. doi:10.1016/j.catcom.2005.10.002
Su, F., Lv, L., Lee, F. Y., Liu, T., Cooper, A. I., & Zhao, X. S. (2007). Thermally Reduced Ruthenium Nanoparticles as a Highly Active Heterogeneous Catalyst for Hydrogenation of Monoaromatics. Journal of the American Chemical Society, 129(46), 14213-14223. doi:10.1021/ja072697v
Byrne, P. A., & Gilheany, D. G. (2013). The modern interpretation of the Wittig reaction mechanism. Chemical Society Reviews, 42(16), 6670. doi:10.1039/c3cs60105f
O’Brien, C. J., Tellez, J. L., Nixon, Z. S., Kang, L. J., Carter, A. L., Kunkel, S. R., … Chass, G. A. (2009). Recycling the Waste: The Development of a Catalytic Wittig Reaction. Angewandte Chemie International Edition, 48(37), 6836-6839. doi:10.1002/anie.200902525
Lee, E. Y., Kim, Y., Lee, J. S., & Park, J. (2009). Ruthenium-Catalyzed, One-Pot Alcohol Oxidation-Wittig Reaction Producing α,β-Unsaturated Esters. European Journal of Organic Chemistry, 2009(18), 2943-2946. doi:10.1002/ejoc.200900274
Luan, Z., Hartmann, M., Zhao, D., Zhou, W., & Kevan, L. (1999). Alumination and Ion Exchange of Mesoporous SBA-15 Molecular Sieves. Chemistry of Materials, 11(6), 1621-1627. doi:10.1021/cm9900756
Zhang, W., Pauly, T. R., & Pinnavaia, T. J. (1997). Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral (S°I°) Assembly Pathway. Chemistry of Materials, 9(11), 2491-2498. doi:10.1021/cm970354y
Carrillo, A. I., Serrano, E., Luque, R., & Matínez, J. G. (2010). Introducing catalytic activity in helical nanostructures: microwave assisted oxathioacetalisation catalysed by Al-containing helical mesoporous silicas. Chemical Communications, 46(28), 5163. doi:10.1039/c0cc00030b
Chary, K. V. R., & Srikanth, C. S. (2008). Selective Hydrogenation of Nitrobenzene to Aniline over Ru/SBA-15 Catalysts. Catalysis Letters, 128(1-2), 164-170. doi:10.1007/s10562-008-9720-1
Chen, J., Zhou, J., Wang, R., & Zhang, J. (2009). Preparation, Characterization, and Performance of HMS-Supported Ni Catalysts for Hydrodechlorination of Chorobenzene. Industrial & Engineering Chemistry Research, 48(8), 3802-3811. doi:10.1021/ie801792h
Carrillo, A. I., Linares, N., Serrano, E., & García-Martínez, J. (2011). Well-ordered mesoporous interconnected silica spheres prepared using extremely low surfactant concentrations. Materials Chemistry and Physics, 129(1-2), 261-269. doi:10.1016/j.matchemphys.2011.04.015
Kusunoki, I., & Igari, Y. (1992). XPS study of a SiC film produced on Si(100) by reaction with a C2H2 beam. Applied Surface Science, 59(2), 95-104. doi:10.1016/0169-4332(92)90293-7
Zarrin, H., Higgins, D., Jun, Y., Chen, Z., & Fowler, M. (2011). Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells. The Journal of Physical Chemistry C, 115(42), 20774-20781. doi:10.1021/jp204610j
Tu, W., & Liu, H. (2000). Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. Journal of Materials Chemistry, 10(9), 2207-2211. doi:10.1039/b002232m
Yan, X., Liu, H., & Liew, K. Y. (2001). Journal of Materials Chemistry, 11(12), 3387-3391. doi:10.1039/b103046a
Newman, J. D. S., & Blanchard, G. J. (2006). Formation of Gold Nanoparticles Using Amine Reducing Agents. Langmuir, 22(13), 5882-5887. doi:10.1021/la060045z
Marquez, D. T., Carrillo, A. I., & Scaiano, J. C. (2013). Plasmon Excitation of Supported Gold Nanoparticles Can Control Molecular Release from Supramolecular Systems. Langmuir, 29(33), 10521-10528. doi:10.1021/la4019794
Kim, W.-H., Park, I. S., & Park, J. (2006). Acceptor-Free Alcohol Dehydrogenation by Recyclable Ruthenium Catalyst. Organic Letters, 8(12), 2543-2545. doi:10.1021/ol060750z
Robiette, R., Richardson, J., Aggarwal, V. K., & Harvey, J. N. (2006). Reactivity and Selectivity in the Wittig Reaction: A Computational Study. Journal of the American Chemical Society, 128(7), 2394-2409. doi:10.1021/ja056650q
Edwards, M. G., Jazzar, R. F. R., Paine, B. M., Shermer, D. J., Whittlesey, M. K., Williams, J. M. J., & Edney, D. D. (2004). Borrowing hydrogen: a catalytic route to C–C bond formation from alcohols. Chem. Commun., (1), 90-91. doi:10.1039/b312162c
Burling, S., Paine, B. M., Nama, D., Brown, V. S., Mahon, M. F., Prior, T. J., … Williams, J. M. J. (2007). CH Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes: Application in a Catalytic Tandem Reaction Involving CC Bond Formation from Alcohols. Journal of the American Chemical Society, 129(7), 1987-1995. doi:10.1021/ja065790c
Alonso, F., Riente, P., & Yus, M. (2009). Wittig-Type Olefination of Alcohols Promoted by Nickel Nanoparticles: Synthesis of Polymethoxylated and Polyhydroxylated Stilbenes. European Journal of Organic Chemistry, 2009(34), 6034-6042. doi:10.1002/ejoc.200900951
Alonso, F., Riente, P., & Yus, M. (2011). Nickel Nanoparticles in Hydrogen Transfer Reactions. Accounts of Chemical Research, 44(5), 379-391. doi:10.1021/ar1001582
Griffith, W. P., Ley, S. V., Whitcombe, G. P., & White, A. D. (1987). Preparation and use of tetra-n-butylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols. Journal of the Chemical Society, Chemical Communications, (21), 1625. doi:10.1039/c39870001625
Black, P. J., Edwards, M. G., & Williams, J. M. J. (2006). Borrowing Hydrogen: Indirect «Wittig» Olefination for the Formation of C–C Bonds from Alcohols. European Journal of Organic Chemistry, 2006(19), 4367-4378. doi:10.1002/ejoc.200600070
Nixon, T. D., Whittlesey, M. K., & Williams, J. M. J. (2009). Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans., (5), 753-762. doi:10.1039/b813383b
Bragança, L. F. F. P. G., Ojeda, M., Fierro, J. L. G., & da Silva, M. I. P. (2012). Bimetallic Co-Fe nanocrystals deposited on SBA-15 and HMS mesoporous silicas as catalysts for Fischer–Tropsch synthesis. Applied Catalysis A: General, 423-424, 146-153. doi:10.1016/j.apcata.2012.02.031
[-]