- -

Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions

Show full item record

Carrillo, AI.; Schmidt, LC.; Marín García, ML.; Scaiano, JC. (2014). Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions. Catalysis Science and Technology. 4(2):435-440. doi:10.1039/c3cy00773a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61428

Files in this item

Item Metadata

Title: Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions
Author: Carrillo, Adela I. Schmidt, Luciana C. Marín García, Mª Luisa Scaiano, Juan C.
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
A new efficient approach for the in situ synthesis of anchored ruthenium nanoparticles (RuNP) in three different kinds of mesoporous silica materials, MCM-41, SBA-15 and HMS, has been developed. Solids have been synthesized ...[+]
Subjects: FISCHER-TROPSCH SYNTHESIS , C BOND FORMATION , BORROWING HYDROGEN , GOLD NANOPARTICLES , MOLECULAR-SIEVES , ALCOHOLS , FRAMEWORK , EXCHANGE , SBA-15 , XPS
Copyrigths: Reserva de todos los derechos
Source:
Catalysis Science and Technology. (issn: 2044-4753 ) (eissn: 2044-4761 )
DOI: 10.1039/c3cy00773a
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c3cy00773a
Thanks:
Thanks are due to the Natural Sciences and Engineering Council of Canada and the Canadian Foundation for Innovation for their generous support. M.L. Marin thanks the Universitat Politecnica de Valencia (Programa de Apoyo ...[+]
Type: Artículo

References

G. C. F. Cavani , S.Perathoner and F.Trifiro, Sustainable Industrial Chemistry, Wiley-VHC, Weinheim, 2009

Hulea, V., Brunel, D., Galarneau, A., Philippot, K., Chaudret, B., Kooyman, P. J., & Fajula, F. (2005). Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 79(1-3), 185-194. doi:10.1016/j.micromeso.2004.10.041

Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030 [+]
G. C. F. Cavani , S.Perathoner and F.Trifiro, Sustainable Industrial Chemistry, Wiley-VHC, Weinheim, 2009

Hulea, V., Brunel, D., Galarneau, A., Philippot, K., Chaudret, B., Kooyman, P. J., & Fajula, F. (2005). Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 79(1-3), 185-194. doi:10.1016/j.micromeso.2004.10.041

Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030

Trong On, D., Desplantier-Giscard, D., Danumah, C., & Kaliaguine, S. (2001). Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A: General, 222(1-2), 299-357. doi:10.1016/s0926-860x(01)00842-0

Wu, Y., Zhang, L., Li, G., Liang, C., Huang, X., Zhang, Y., … Zhixiang, C. (2001). Synthesis and characterization of nanocomposites with palladium embedded in mesoporous silica. Materials Research Bulletin, 36(1-2), 253-263. doi:10.1016/s0025-5408(01)00494-9

Garcia-Martinez, J., Linares, N., Sinibaldi, S., Coronado, E., & Ribera, A. (2009). Incorporation of Pd nanoparticles in mesostructured silica. Microporous and Mesoporous Materials, 117(1-2), 170-177. doi:10.1016/j.micromeso.2008.06.038

Carrillo, A. I., García-Martínez, J., Llusar, R., Serrano, E., Sorribes, I., Vicent, C., & Alejandro Vidal-Moya, J. (2012). Incorporation of cubane-type Mo3S4 molybdenum cluster sulfides in the framework of mesoporous silica. Microporous and Mesoporous Materials, 151, 380-389. doi:10.1016/j.micromeso.2011.10.005

Iglesia, E., Soled, S. L., Fiato, R. A., & Via, G. H. (1993). Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis, 143(2), 345-368. doi:10.1006/jcat.1993.1281

VanderWiel, D. P., Pruski, M., & King, T. S. (1999). A Kinetic Study on the Adsorption and Reaction of Hydrogen over Silica-Supported Ruthenium and Silver–Ruthenium Catalysts during the Hydrogenation of Carbon Monoxide. Journal of Catalysis, 188(1), 186-202. doi:10.1006/jcat.1999.2646

Mazzieri, V. (2003). XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Applied Surface Science, 210(3-4), 222-230. doi:10.1016/s0169-4332(03)00146-6

Zhang, J., Xu, H., Ge, Q., & Li, W. (2006). Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect. Catalysis Communications, 7(3), 148-152. doi:10.1016/j.catcom.2005.10.002

Su, F., Lv, L., Lee, F. Y., Liu, T., Cooper, A. I., & Zhao, X. S. (2007). Thermally Reduced Ruthenium Nanoparticles as a Highly Active Heterogeneous Catalyst for Hydrogenation of Monoaromatics. Journal of the American Chemical Society, 129(46), 14213-14223. doi:10.1021/ja072697v

Byrne, P. A., & Gilheany, D. G. (2013). The modern interpretation of the Wittig reaction mechanism. Chemical Society Reviews, 42(16), 6670. doi:10.1039/c3cs60105f

O’Brien, C. J., Tellez, J. L., Nixon, Z. S., Kang, L. J., Carter, A. L., Kunkel, S. R., … Chass, G. A. (2009). Recycling the Waste: The Development of a Catalytic Wittig Reaction. Angewandte Chemie International Edition, 48(37), 6836-6839. doi:10.1002/anie.200902525

Lee, E. Y., Kim, Y., Lee, J. S., & Park, J. (2009). Ruthenium-Catalyzed, One-Pot Alcohol Oxidation-Wittig Reaction Producing α,β-Unsaturated Esters. European Journal of Organic Chemistry, 2009(18), 2943-2946. doi:10.1002/ejoc.200900274

Luan, Z., Hartmann, M., Zhao, D., Zhou, W., & Kevan, L. (1999). Alumination and Ion Exchange of Mesoporous SBA-15 Molecular Sieves. Chemistry of Materials, 11(6), 1621-1627. doi:10.1021/cm9900756

Zhang, W., Pauly, T. R., & Pinnavaia, T. J. (1997). Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral (S°I°) Assembly Pathway. Chemistry of Materials, 9(11), 2491-2498. doi:10.1021/cm970354y

Carrillo, A. I., Serrano, E., Luque, R., & Matínez, J. G. (2010). Introducing catalytic activity in helical nanostructures: microwave assisted oxathioacetalisation catalysed by Al-containing helical mesoporous silicas. Chemical Communications, 46(28), 5163. doi:10.1039/c0cc00030b

Chary, K. V. R., & Srikanth, C. S. (2008). Selective Hydrogenation of Nitrobenzene to Aniline over Ru/SBA-15 Catalysts. Catalysis Letters, 128(1-2), 164-170. doi:10.1007/s10562-008-9720-1

Chen, J., Zhou, J., Wang, R., & Zhang, J. (2009). Preparation, Characterization, and Performance of HMS-Supported Ni Catalysts for Hydrodechlorination of Chorobenzene. Industrial & Engineering Chemistry Research, 48(8), 3802-3811. doi:10.1021/ie801792h

Carrillo, A. I., Linares, N., Serrano, E., & García-Martínez, J. (2011). Well-ordered mesoporous interconnected silica spheres prepared using extremely low surfactant concentrations. Materials Chemistry and Physics, 129(1-2), 261-269. doi:10.1016/j.matchemphys.2011.04.015

Kusunoki, I., & Igari, Y. (1992). XPS study of a SiC film produced on Si(100) by reaction with a C2H2 beam. Applied Surface Science, 59(2), 95-104. doi:10.1016/0169-4332(92)90293-7

Zarrin, H., Higgins, D., Jun, Y., Chen, Z., & Fowler, M. (2011). Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells. The Journal of Physical Chemistry C, 115(42), 20774-20781. doi:10.1021/jp204610j

Tu, W., & Liu, H. (2000). Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. Journal of Materials Chemistry, 10(9), 2207-2211. doi:10.1039/b002232m

Yan, X., Liu, H., & Liew, K. Y. (2001). Journal of Materials Chemistry, 11(12), 3387-3391. doi:10.1039/b103046a

Newman, J. D. S., & Blanchard, G. J. (2006). Formation of Gold Nanoparticles Using Amine Reducing Agents. Langmuir, 22(13), 5882-5887. doi:10.1021/la060045z

Marquez, D. T., Carrillo, A. I., & Scaiano, J. C. (2013). Plasmon Excitation of Supported Gold Nanoparticles Can Control Molecular Release from Supramolecular Systems. Langmuir, 29(33), 10521-10528. doi:10.1021/la4019794

Kim, W.-H., Park, I. S., & Park, J. (2006). Acceptor-Free Alcohol Dehydrogenation by Recyclable Ruthenium Catalyst. Organic Letters, 8(12), 2543-2545. doi:10.1021/ol060750z

Robiette, R., Richardson, J., Aggarwal, V. K., & Harvey, J. N. (2006). Reactivity and Selectivity in the Wittig Reaction:  A Computational Study. Journal of the American Chemical Society, 128(7), 2394-2409. doi:10.1021/ja056650q

Edwards, M. G., Jazzar, R. F. R., Paine, B. M., Shermer, D. J., Whittlesey, M. K., Williams, J. M. J., & Edney, D. D. (2004). Borrowing hydrogen: a catalytic route to C–C bond formation from alcohols. Chem. Commun., (1), 90-91. doi:10.1039/b312162c

Burling, S., Paine, B. M., Nama, D., Brown, V. S., Mahon, M. F., Prior, T. J., … Williams, J. M. J. (2007). CH Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes:  Application in a Catalytic Tandem Reaction Involving CC Bond Formation from Alcohols. Journal of the American Chemical Society, 129(7), 1987-1995. doi:10.1021/ja065790c

Alonso, F., Riente, P., & Yus, M. (2009). Wittig-Type Olefination of Alcohols Promoted by Nickel Nanoparticles: Synthesis of Polymethoxylated and Polyhydroxylated Stilbenes. European Journal of Organic Chemistry, 2009(34), 6034-6042. doi:10.1002/ejoc.200900951

Alonso, F., Riente, P., & Yus, M. (2011). Nickel Nanoparticles in Hydrogen Transfer Reactions. Accounts of Chemical Research, 44(5), 379-391. doi:10.1021/ar1001582

Griffith, W. P., Ley, S. V., Whitcombe, G. P., & White, A. D. (1987). Preparation and use of tetra-n-butylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols. Journal of the Chemical Society, Chemical Communications, (21), 1625. doi:10.1039/c39870001625

Black, P. J., Edwards, M. G., & Williams, J. M. J. (2006). Borrowing Hydrogen: Indirect «Wittig» Olefination for the Formation of C–C Bonds from Alcohols. European Journal of Organic Chemistry, 2006(19), 4367-4378. doi:10.1002/ejoc.200600070

Nixon, T. D., Whittlesey, M. K., & Williams, J. M. J. (2009). Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans., (5), 753-762. doi:10.1039/b813383b

Bragança, L. F. F. P. G., Ojeda, M., Fierro, J. L. G., & da Silva, M. I. P. (2012). Bimetallic Co-Fe nanocrystals deposited on SBA-15 and HMS mesoporous silicas as catalysts for Fischer–Tropsch synthesis. Applied Catalysis A: General, 423-424, 146-153. doi:10.1016/j.apcata.2012.02.031

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record