- -

Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carrillo, Adela I. es_ES
dc.contributor.author Schmidt, Luciana C. es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.contributor.author Scaiano, Juan C. es_ES
dc.date.accessioned 2016-03-04T10:50:34Z
dc.date.available 2016-03-04T10:50:34Z
dc.date.issued 2014
dc.identifier.issn 2044-4753
dc.identifier.uri http://hdl.handle.net/10251/61428
dc.description.abstract A new efficient approach for the in situ synthesis of anchored ruthenium nanoparticles (RuNP) in three different kinds of mesoporous silica materials, MCM-41, SBA-15 and HMS, has been developed. Solids have been synthesized under very mild conditions from RuCl3 center dot H2O salt reduced in one hour at room temperature in the mesoporous silicas previously grafted with aminopropyltriethoxysilane (APTES). Well-dispersed ruthenium nanoparticles, with an average size of 3 nm, anchored into the silica network by the APTES were obtained. These materials, with a molar ratio of Si/Ru = 40, were found to be catalytically active and selective in the alcohol oxidation-Wittig olefination. Interestingly, while the reaction occurs from the alcohol, control experiments suggest that the aldehyde (the common Wittig substrate) is not involved. es_ES
dc.description.sponsorship Thanks are due to the Natural Sciences and Engineering Council of Canada and the Canadian Foundation for Innovation for their generous support. M.L. Marin thanks the Universitat Politecnica de Valencia (Programa de Apoyo a la Investigacion y Desarrollo) for its financial support. Thanks are due to Dr. Yun Liu for advice on XPS interpretation. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject FISCHER-TROPSCH SYNTHESIS es_ES
dc.subject C BOND FORMATION es_ES
dc.subject BORROWING HYDROGEN es_ES
dc.subject GOLD NANOPARTICLES es_ES
dc.subject MOLECULAR-SIEVES es_ES
dc.subject ALCOHOLS es_ES
dc.subject FRAMEWORK es_ES
dc.subject EXCHANGE es_ES
dc.subject SBA-15 es_ES
dc.subject XPS es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3cy00773a
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Carrillo, AI.; Schmidt, LC.; Marín García, ML.; Scaiano, JC. (2014). Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions. Catalysis Science and Technology. 4(2):435-440. doi:10.1039/c3cy00773a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3cy00773a es_ES
dc.description.upvformatpinicio 435 es_ES
dc.description.upvformatpfin 440 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 279826 es_ES
dc.identifier.eissn 2044-4761
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Canada Foundation for Innovation es_ES
dc.description.references G. C. F. Cavani , S.Perathoner and F.Trifiro, Sustainable Industrial Chemistry, Wiley-VHC, Weinheim, 2009 es_ES
dc.description.references Hulea, V., Brunel, D., Galarneau, A., Philippot, K., Chaudret, B., Kooyman, P. J., & Fajula, F. (2005). Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 79(1-3), 185-194. doi:10.1016/j.micromeso.2004.10.041 es_ES
dc.description.references Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030 es_ES
dc.description.references Trong On, D., Desplantier-Giscard, D., Danumah, C., & Kaliaguine, S. (2001). Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A: General, 222(1-2), 299-357. doi:10.1016/s0926-860x(01)00842-0 es_ES
dc.description.references Wu, Y., Zhang, L., Li, G., Liang, C., Huang, X., Zhang, Y., … Zhixiang, C. (2001). Synthesis and characterization of nanocomposites with palladium embedded in mesoporous silica. Materials Research Bulletin, 36(1-2), 253-263. doi:10.1016/s0025-5408(01)00494-9 es_ES
dc.description.references Garcia-Martinez, J., Linares, N., Sinibaldi, S., Coronado, E., & Ribera, A. (2009). Incorporation of Pd nanoparticles in mesostructured silica. Microporous and Mesoporous Materials, 117(1-2), 170-177. doi:10.1016/j.micromeso.2008.06.038 es_ES
dc.description.references Carrillo, A. I., García-Martínez, J., Llusar, R., Serrano, E., Sorribes, I., Vicent, C., & Alejandro Vidal-Moya, J. (2012). Incorporation of cubane-type Mo3S4 molybdenum cluster sulfides in the framework of mesoporous silica. Microporous and Mesoporous Materials, 151, 380-389. doi:10.1016/j.micromeso.2011.10.005 es_ES
dc.description.references Iglesia, E., Soled, S. L., Fiato, R. A., & Via, G. H. (1993). Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis, 143(2), 345-368. doi:10.1006/jcat.1993.1281 es_ES
dc.description.references VanderWiel, D. P., Pruski, M., & King, T. S. (1999). A Kinetic Study on the Adsorption and Reaction of Hydrogen over Silica-Supported Ruthenium and Silver–Ruthenium Catalysts during the Hydrogenation of Carbon Monoxide. Journal of Catalysis, 188(1), 186-202. doi:10.1006/jcat.1999.2646 es_ES
dc.description.references Mazzieri, V. (2003). XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Applied Surface Science, 210(3-4), 222-230. doi:10.1016/s0169-4332(03)00146-6 es_ES
dc.description.references Zhang, J., Xu, H., Ge, Q., & Li, W. (2006). Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect. Catalysis Communications, 7(3), 148-152. doi:10.1016/j.catcom.2005.10.002 es_ES
dc.description.references Su, F., Lv, L., Lee, F. Y., Liu, T., Cooper, A. I., & Zhao, X. S. (2007). Thermally Reduced Ruthenium Nanoparticles as a Highly Active Heterogeneous Catalyst for Hydrogenation of Monoaromatics. Journal of the American Chemical Society, 129(46), 14213-14223. doi:10.1021/ja072697v es_ES
dc.description.references Byrne, P. A., & Gilheany, D. G. (2013). The modern interpretation of the Wittig reaction mechanism. Chemical Society Reviews, 42(16), 6670. doi:10.1039/c3cs60105f es_ES
dc.description.references O’Brien, C. J., Tellez, J. L., Nixon, Z. S., Kang, L. J., Carter, A. L., Kunkel, S. R., … Chass, G. A. (2009). Recycling the Waste: The Development of a Catalytic Wittig Reaction. Angewandte Chemie International Edition, 48(37), 6836-6839. doi:10.1002/anie.200902525 es_ES
dc.description.references Lee, E. Y., Kim, Y., Lee, J. S., & Park, J. (2009). Ruthenium-Catalyzed, One-Pot Alcohol Oxidation-Wittig Reaction Producing α,β-Unsaturated Esters. European Journal of Organic Chemistry, 2009(18), 2943-2946. doi:10.1002/ejoc.200900274 es_ES
dc.description.references Luan, Z., Hartmann, M., Zhao, D., Zhou, W., & Kevan, L. (1999). Alumination and Ion Exchange of Mesoporous SBA-15 Molecular Sieves. Chemistry of Materials, 11(6), 1621-1627. doi:10.1021/cm9900756 es_ES
dc.description.references Zhang, W., Pauly, T. R., & Pinnavaia, T. J. (1997). Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral (S°I°) Assembly Pathway. Chemistry of Materials, 9(11), 2491-2498. doi:10.1021/cm970354y es_ES
dc.description.references Carrillo, A. I., Serrano, E., Luque, R., & Matínez, J. G. (2010). Introducing catalytic activity in helical nanostructures: microwave assisted oxathioacetalisation catalysed by Al-containing helical mesoporous silicas. Chemical Communications, 46(28), 5163. doi:10.1039/c0cc00030b es_ES
dc.description.references Chary, K. V. R., & Srikanth, C. S. (2008). Selective Hydrogenation of Nitrobenzene to Aniline over Ru/SBA-15 Catalysts. Catalysis Letters, 128(1-2), 164-170. doi:10.1007/s10562-008-9720-1 es_ES
dc.description.references Chen, J., Zhou, J., Wang, R., & Zhang, J. (2009). Preparation, Characterization, and Performance of HMS-Supported Ni Catalysts for Hydrodechlorination of Chorobenzene. Industrial & Engineering Chemistry Research, 48(8), 3802-3811. doi:10.1021/ie801792h es_ES
dc.description.references Carrillo, A. I., Linares, N., Serrano, E., & García-Martínez, J. (2011). Well-ordered mesoporous interconnected silica spheres prepared using extremely low surfactant concentrations. Materials Chemistry and Physics, 129(1-2), 261-269. doi:10.1016/j.matchemphys.2011.04.015 es_ES
dc.description.references Kusunoki, I., & Igari, Y. (1992). XPS study of a SiC film produced on Si(100) by reaction with a C2H2 beam. Applied Surface Science, 59(2), 95-104. doi:10.1016/0169-4332(92)90293-7 es_ES
dc.description.references Zarrin, H., Higgins, D., Jun, Y., Chen, Z., & Fowler, M. (2011). Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells. The Journal of Physical Chemistry C, 115(42), 20774-20781. doi:10.1021/jp204610j es_ES
dc.description.references Tu, W., & Liu, H. (2000). Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. Journal of Materials Chemistry, 10(9), 2207-2211. doi:10.1039/b002232m es_ES
dc.description.references Yan, X., Liu, H., & Liew, K. Y. (2001). Journal of Materials Chemistry, 11(12), 3387-3391. doi:10.1039/b103046a es_ES
dc.description.references Newman, J. D. S., & Blanchard, G. J. (2006). Formation of Gold Nanoparticles Using Amine Reducing Agents. Langmuir, 22(13), 5882-5887. doi:10.1021/la060045z es_ES
dc.description.references Marquez, D. T., Carrillo, A. I., & Scaiano, J. C. (2013). Plasmon Excitation of Supported Gold Nanoparticles Can Control Molecular Release from Supramolecular Systems. Langmuir, 29(33), 10521-10528. doi:10.1021/la4019794 es_ES
dc.description.references Kim, W.-H., Park, I. S., & Park, J. (2006). Acceptor-Free Alcohol Dehydrogenation by Recyclable Ruthenium Catalyst. Organic Letters, 8(12), 2543-2545. doi:10.1021/ol060750z es_ES
dc.description.references Robiette, R., Richardson, J., Aggarwal, V. K., & Harvey, J. N. (2006). Reactivity and Selectivity in the Wittig Reaction:  A Computational Study. Journal of the American Chemical Society, 128(7), 2394-2409. doi:10.1021/ja056650q es_ES
dc.description.references Edwards, M. G., Jazzar, R. F. R., Paine, B. M., Shermer, D. J., Whittlesey, M. K., Williams, J. M. J., & Edney, D. D. (2004). Borrowing hydrogen: a catalytic route to C–C bond formation from alcohols. Chem. Commun., (1), 90-91. doi:10.1039/b312162c es_ES
dc.description.references Burling, S., Paine, B. M., Nama, D., Brown, V. S., Mahon, M. F., Prior, T. J., … Williams, J. M. J. (2007). CH Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes:  Application in a Catalytic Tandem Reaction Involving CC Bond Formation from Alcohols. Journal of the American Chemical Society, 129(7), 1987-1995. doi:10.1021/ja065790c es_ES
dc.description.references Alonso, F., Riente, P., & Yus, M. (2009). Wittig-Type Olefination of Alcohols Promoted by Nickel Nanoparticles: Synthesis of Polymethoxylated and Polyhydroxylated Stilbenes. European Journal of Organic Chemistry, 2009(34), 6034-6042. doi:10.1002/ejoc.200900951 es_ES
dc.description.references Alonso, F., Riente, P., & Yus, M. (2011). Nickel Nanoparticles in Hydrogen Transfer Reactions. Accounts of Chemical Research, 44(5), 379-391. doi:10.1021/ar1001582 es_ES
dc.description.references Griffith, W. P., Ley, S. V., Whitcombe, G. P., & White, A. D. (1987). Preparation and use of tetra-n-butylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols. Journal of the Chemical Society, Chemical Communications, (21), 1625. doi:10.1039/c39870001625 es_ES
dc.description.references Black, P. J., Edwards, M. G., & Williams, J. M. J. (2006). Borrowing Hydrogen: Indirect «Wittig» Olefination for the Formation of C–C Bonds from Alcohols. European Journal of Organic Chemistry, 2006(19), 4367-4378. doi:10.1002/ejoc.200600070 es_ES
dc.description.references Nixon, T. D., Whittlesey, M. K., & Williams, J. M. J. (2009). Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans., (5), 753-762. doi:10.1039/b813383b es_ES
dc.description.references Bragança, L. F. F. P. G., Ojeda, M., Fierro, J. L. G., & da Silva, M. I. P. (2012). Bimetallic Co-Fe nanocrystals deposited on SBA-15 and HMS mesoporous silicas as catalysts for Fischer–Tropsch synthesis. Applied Catalysis A: General, 423-424, 146-153. doi:10.1016/j.apcata.2012.02.031 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem