Mostrar el registro sencillo del ítem
dc.contributor.author | Carrillo, Adela I. | es_ES |
dc.contributor.author | Schmidt, Luciana C. | es_ES |
dc.contributor.author | Marín García, Mª Luisa | es_ES |
dc.contributor.author | Scaiano, Juan C. | es_ES |
dc.date.accessioned | 2016-03-04T10:50:34Z | |
dc.date.available | 2016-03-04T10:50:34Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 2044-4753 | |
dc.identifier.uri | http://hdl.handle.net/10251/61428 | |
dc.description.abstract | A new efficient approach for the in situ synthesis of anchored ruthenium nanoparticles (RuNP) in three different kinds of mesoporous silica materials, MCM-41, SBA-15 and HMS, has been developed. Solids have been synthesized under very mild conditions from RuCl3 center dot H2O salt reduced in one hour at room temperature in the mesoporous silicas previously grafted with aminopropyltriethoxysilane (APTES). Well-dispersed ruthenium nanoparticles, with an average size of 3 nm, anchored into the silica network by the APTES were obtained. These materials, with a molar ratio of Si/Ru = 40, were found to be catalytically active and selective in the alcohol oxidation-Wittig olefination. Interestingly, while the reaction occurs from the alcohol, control experiments suggest that the aldehyde (the common Wittig substrate) is not involved. | es_ES |
dc.description.sponsorship | Thanks are due to the Natural Sciences and Engineering Council of Canada and the Canadian Foundation for Innovation for their generous support. M.L. Marin thanks the Universitat Politecnica de Valencia (Programa de Apoyo a la Investigacion y Desarrollo) for its financial support. Thanks are due to Dr. Yun Liu for advice on XPS interpretation. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Catalysis Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | FISCHER-TROPSCH SYNTHESIS | es_ES |
dc.subject | C BOND FORMATION | es_ES |
dc.subject | BORROWING HYDROGEN | es_ES |
dc.subject | GOLD NANOPARTICLES | es_ES |
dc.subject | MOLECULAR-SIEVES | es_ES |
dc.subject | ALCOHOLS | es_ES |
dc.subject | FRAMEWORK | es_ES |
dc.subject | EXCHANGE | es_ES |
dc.subject | SBA-15 | es_ES |
dc.subject | XPS | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3cy00773a | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Carrillo, AI.; Schmidt, LC.; Marín García, ML.; Scaiano, JC. (2014). Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions. Catalysis Science and Technology. 4(2):435-440. doi:10.1039/c3cy00773a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3cy00773a | es_ES |
dc.description.upvformatpinicio | 435 | es_ES |
dc.description.upvformatpfin | 440 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 279826 | es_ES |
dc.identifier.eissn | 2044-4761 | |
dc.contributor.funder | Natural Sciences and Engineering Research Council of Canada | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Canada Foundation for Innovation | es_ES |
dc.description.references | G. C. F. Cavani , S.Perathoner and F.Trifiro, Sustainable Industrial Chemistry, Wiley-VHC, Weinheim, 2009 | es_ES |
dc.description.references | Hulea, V., Brunel, D., Galarneau, A., Philippot, K., Chaudret, B., Kooyman, P. J., & Fajula, F. (2005). Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 79(1-3), 185-194. doi:10.1016/j.micromeso.2004.10.041 | es_ES |
dc.description.references | Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030 | es_ES |
dc.description.references | Trong On, D., Desplantier-Giscard, D., Danumah, C., & Kaliaguine, S. (2001). Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A: General, 222(1-2), 299-357. doi:10.1016/s0926-860x(01)00842-0 | es_ES |
dc.description.references | Wu, Y., Zhang, L., Li, G., Liang, C., Huang, X., Zhang, Y., … Zhixiang, C. (2001). Synthesis and characterization of nanocomposites with palladium embedded in mesoporous silica. Materials Research Bulletin, 36(1-2), 253-263. doi:10.1016/s0025-5408(01)00494-9 | es_ES |
dc.description.references | Garcia-Martinez, J., Linares, N., Sinibaldi, S., Coronado, E., & Ribera, A. (2009). Incorporation of Pd nanoparticles in mesostructured silica. Microporous and Mesoporous Materials, 117(1-2), 170-177. doi:10.1016/j.micromeso.2008.06.038 | es_ES |
dc.description.references | Carrillo, A. I., García-Martínez, J., Llusar, R., Serrano, E., Sorribes, I., Vicent, C., & Alejandro Vidal-Moya, J. (2012). Incorporation of cubane-type Mo3S4 molybdenum cluster sulfides in the framework of mesoporous silica. Microporous and Mesoporous Materials, 151, 380-389. doi:10.1016/j.micromeso.2011.10.005 | es_ES |
dc.description.references | Iglesia, E., Soled, S. L., Fiato, R. A., & Via, G. H. (1993). Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis, 143(2), 345-368. doi:10.1006/jcat.1993.1281 | es_ES |
dc.description.references | VanderWiel, D. P., Pruski, M., & King, T. S. (1999). A Kinetic Study on the Adsorption and Reaction of Hydrogen over Silica-Supported Ruthenium and Silver–Ruthenium Catalysts during the Hydrogenation of Carbon Monoxide. Journal of Catalysis, 188(1), 186-202. doi:10.1006/jcat.1999.2646 | es_ES |
dc.description.references | Mazzieri, V. (2003). XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Applied Surface Science, 210(3-4), 222-230. doi:10.1016/s0169-4332(03)00146-6 | es_ES |
dc.description.references | Zhang, J., Xu, H., Ge, Q., & Li, W. (2006). Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect. Catalysis Communications, 7(3), 148-152. doi:10.1016/j.catcom.2005.10.002 | es_ES |
dc.description.references | Su, F., Lv, L., Lee, F. Y., Liu, T., Cooper, A. I., & Zhao, X. S. (2007). Thermally Reduced Ruthenium Nanoparticles as a Highly Active Heterogeneous Catalyst for Hydrogenation of Monoaromatics. Journal of the American Chemical Society, 129(46), 14213-14223. doi:10.1021/ja072697v | es_ES |
dc.description.references | Byrne, P. A., & Gilheany, D. G. (2013). The modern interpretation of the Wittig reaction mechanism. Chemical Society Reviews, 42(16), 6670. doi:10.1039/c3cs60105f | es_ES |
dc.description.references | O’Brien, C. J., Tellez, J. L., Nixon, Z. S., Kang, L. J., Carter, A. L., Kunkel, S. R., … Chass, G. A. (2009). Recycling the Waste: The Development of a Catalytic Wittig Reaction. Angewandte Chemie International Edition, 48(37), 6836-6839. doi:10.1002/anie.200902525 | es_ES |
dc.description.references | Lee, E. Y., Kim, Y., Lee, J. S., & Park, J. (2009). Ruthenium-Catalyzed, One-Pot Alcohol Oxidation-Wittig Reaction Producing α,β-Unsaturated Esters. European Journal of Organic Chemistry, 2009(18), 2943-2946. doi:10.1002/ejoc.200900274 | es_ES |
dc.description.references | Luan, Z., Hartmann, M., Zhao, D., Zhou, W., & Kevan, L. (1999). Alumination and Ion Exchange of Mesoporous SBA-15 Molecular Sieves. Chemistry of Materials, 11(6), 1621-1627. doi:10.1021/cm9900756 | es_ES |
dc.description.references | Zhang, W., Pauly, T. R., & Pinnavaia, T. J. (1997). Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral (S°I°) Assembly Pathway. Chemistry of Materials, 9(11), 2491-2498. doi:10.1021/cm970354y | es_ES |
dc.description.references | Carrillo, A. I., Serrano, E., Luque, R., & Matínez, J. G. (2010). Introducing catalytic activity in helical nanostructures: microwave assisted oxathioacetalisation catalysed by Al-containing helical mesoporous silicas. Chemical Communications, 46(28), 5163. doi:10.1039/c0cc00030b | es_ES |
dc.description.references | Chary, K. V. R., & Srikanth, C. S. (2008). Selective Hydrogenation of Nitrobenzene to Aniline over Ru/SBA-15 Catalysts. Catalysis Letters, 128(1-2), 164-170. doi:10.1007/s10562-008-9720-1 | es_ES |
dc.description.references | Chen, J., Zhou, J., Wang, R., & Zhang, J. (2009). Preparation, Characterization, and Performance of HMS-Supported Ni Catalysts for Hydrodechlorination of Chorobenzene. Industrial & Engineering Chemistry Research, 48(8), 3802-3811. doi:10.1021/ie801792h | es_ES |
dc.description.references | Carrillo, A. I., Linares, N., Serrano, E., & García-Martínez, J. (2011). Well-ordered mesoporous interconnected silica spheres prepared using extremely low surfactant concentrations. Materials Chemistry and Physics, 129(1-2), 261-269. doi:10.1016/j.matchemphys.2011.04.015 | es_ES |
dc.description.references | Kusunoki, I., & Igari, Y. (1992). XPS study of a SiC film produced on Si(100) by reaction with a C2H2 beam. Applied Surface Science, 59(2), 95-104. doi:10.1016/0169-4332(92)90293-7 | es_ES |
dc.description.references | Zarrin, H., Higgins, D., Jun, Y., Chen, Z., & Fowler, M. (2011). Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells. The Journal of Physical Chemistry C, 115(42), 20774-20781. doi:10.1021/jp204610j | es_ES |
dc.description.references | Tu, W., & Liu, H. (2000). Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. Journal of Materials Chemistry, 10(9), 2207-2211. doi:10.1039/b002232m | es_ES |
dc.description.references | Yan, X., Liu, H., & Liew, K. Y. (2001). Journal of Materials Chemistry, 11(12), 3387-3391. doi:10.1039/b103046a | es_ES |
dc.description.references | Newman, J. D. S., & Blanchard, G. J. (2006). Formation of Gold Nanoparticles Using Amine Reducing Agents. Langmuir, 22(13), 5882-5887. doi:10.1021/la060045z | es_ES |
dc.description.references | Marquez, D. T., Carrillo, A. I., & Scaiano, J. C. (2013). Plasmon Excitation of Supported Gold Nanoparticles Can Control Molecular Release from Supramolecular Systems. Langmuir, 29(33), 10521-10528. doi:10.1021/la4019794 | es_ES |
dc.description.references | Kim, W.-H., Park, I. S., & Park, J. (2006). Acceptor-Free Alcohol Dehydrogenation by Recyclable Ruthenium Catalyst. Organic Letters, 8(12), 2543-2545. doi:10.1021/ol060750z | es_ES |
dc.description.references | Robiette, R., Richardson, J., Aggarwal, V. K., & Harvey, J. N. (2006). Reactivity and Selectivity in the Wittig Reaction: A Computational Study. Journal of the American Chemical Society, 128(7), 2394-2409. doi:10.1021/ja056650q | es_ES |
dc.description.references | Edwards, M. G., Jazzar, R. F. R., Paine, B. M., Shermer, D. J., Whittlesey, M. K., Williams, J. M. J., & Edney, D. D. (2004). Borrowing hydrogen: a catalytic route to C–C bond formation from alcohols. Chem. Commun., (1), 90-91. doi:10.1039/b312162c | es_ES |
dc.description.references | Burling, S., Paine, B. M., Nama, D., Brown, V. S., Mahon, M. F., Prior, T. J., … Williams, J. M. J. (2007). CH Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes: Application in a Catalytic Tandem Reaction Involving CC Bond Formation from Alcohols. Journal of the American Chemical Society, 129(7), 1987-1995. doi:10.1021/ja065790c | es_ES |
dc.description.references | Alonso, F., Riente, P., & Yus, M. (2009). Wittig-Type Olefination of Alcohols Promoted by Nickel Nanoparticles: Synthesis of Polymethoxylated and Polyhydroxylated Stilbenes. European Journal of Organic Chemistry, 2009(34), 6034-6042. doi:10.1002/ejoc.200900951 | es_ES |
dc.description.references | Alonso, F., Riente, P., & Yus, M. (2011). Nickel Nanoparticles in Hydrogen Transfer Reactions. Accounts of Chemical Research, 44(5), 379-391. doi:10.1021/ar1001582 | es_ES |
dc.description.references | Griffith, W. P., Ley, S. V., Whitcombe, G. P., & White, A. D. (1987). Preparation and use of tetra-n-butylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols. Journal of the Chemical Society, Chemical Communications, (21), 1625. doi:10.1039/c39870001625 | es_ES |
dc.description.references | Black, P. J., Edwards, M. G., & Williams, J. M. J. (2006). Borrowing Hydrogen: Indirect «Wittig» Olefination for the Formation of C–C Bonds from Alcohols. European Journal of Organic Chemistry, 2006(19), 4367-4378. doi:10.1002/ejoc.200600070 | es_ES |
dc.description.references | Nixon, T. D., Whittlesey, M. K., & Williams, J. M. J. (2009). Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans., (5), 753-762. doi:10.1039/b813383b | es_ES |
dc.description.references | Bragança, L. F. F. P. G., Ojeda, M., Fierro, J. L. G., & da Silva, M. I. P. (2012). Bimetallic Co-Fe nanocrystals deposited on SBA-15 and HMS mesoporous silicas as catalysts for Fischer–Tropsch synthesis. Applied Catalysis A: General, 423-424, 146-153. doi:10.1016/j.apcata.2012.02.031 | es_ES |