- -

'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carrillo, Adela I. es_ES
dc.contributor.author Stamplecoskie, Kevin G. es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.contributor.author Scaiano, Juan C. es_ES
dc.date.accessioned 2016-03-04T11:21:20Z
dc.date.available 2016-03-04T11:21:20Z
dc.date.issued 2014
dc.identifier.issn 2044-4753
dc.identifier.uri http://hdl.handle.net/10251/61429
dc.description.abstract Single molecule fluorescence microscopy techniques are used to complement conventional catalysis and high-throughput experiments in order to gain a complete picture of a model reaction. In these experiments a model nitroarene is reduced to an amine where, upon reduction, a red shift in absorption/emission, as well as an increase in emission, is observed. The reaction is studied under bulk reaction conditions by NMR spectroscopy and the fluorescence activation makes it possible to also study this reaction at the single molecule level. Fluorescence correlation spectroscopy is a valuable technique in supporting the proposed reaction mechanism and understanding the nature and duration of molecular 'visits' to catalytic sites, where both the starting material, nitroarene, and the amine product have an affinity for the catalyst. es_ES
dc.description.sponsorship Thanks are due to the Natural Sciences and Engineering Council of Canada and the Canadian Foundation for Innovation for generous support. M. L. Marin thanks the Universitat Politecnica de Valencia (Programa de Apoyo a la Investigacion y Desarrollo) for financial support. Technical support from Roxanne Clement at uOttawa's Centre for Catalysis Research and Innovation is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HETEROGENEOUS CATALYSTS es_ES
dc.subject GOLD NANOPARTICLES es_ES
dc.subject COUPLING REACTIONS es_ES
dc.subject REACTIVITY es_ES
dc.subject COMPLEXES es_ES
dc.subject ARYLATION es_ES
dc.subject DYNAMICS es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title 'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4cy00018h
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica es_ES
dc.description.bibliographicCitation Carrillo, AI.; Stamplecoskie, KG.; Marín García, ML.; Scaiano, JC. (2014). 'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques. Catalysis Science and Technology. 4(7):1989-1996. doi:10.1039/c4cy00018h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c4cy00018h es_ES
dc.description.upvformatpinicio 1989 es_ES
dc.description.upvformatpfin 1996 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 279827 es_ES
dc.identifier.eissn 2044-4761
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.contributor.funder Canada Foundation for Innovation es_ES
dc.description.references Stauffer, S. R., & Hartwig, J. F. (2003). Fluorescence Resonance Energy Transfer (FRET) as a High-Throughput Assay for Coupling Reactions. Arylation of Amines as a Case Study. Journal of the American Chemical Society, 125(23), 6977-6985. doi:10.1021/ja034161p es_ES
dc.description.references McNally, A., Prier, C. K., & MacMillan, D. W. C. (2011). Discovery of an  -Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science, 334(6059), 1114-1117. doi:10.1126/science.1213920 es_ES
dc.description.references Roeffaers, M. â J., Deâ Cremer, G., Libeert, J., Ameloot, R., Dedecker, P., Bons, A.-J., … Hofkens, J. (2009). Super-Resolution Reactivity Mapping of Nanostructured Catalyst Particles. Angewandte Chemie International Edition, 48(49), 9285-9289. doi:10.1002/anie.200904944 es_ES
dc.description.references Roeffaers, M. B. J., Hofkens, J., De Cremer, G., De Schryver, F. C., Jacobs, P. A., De Vos, D. E., & Sels, B. F. (2007). Fluorescence microscopy: Bridging the phase gap in catalysis. Catalysis Today, 126(1-2), 44-53. doi:10.1016/j.cattod.2007.03.007 es_ES
dc.description.references Tachikawa, T., & Majima, T. (2012). Single-Molecule, Single-Particle Approaches for Exploring the Structure and Kinetics of Nanocatalysts. Langmuir, 28(24), 8933-8943. doi:10.1021/la300177h es_ES
dc.description.references Zhou, X., Xu, W., Liu, G., Panda, D., & Chen, P. (2010). Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level. Journal of the American Chemical Society, 132(1), 138-146. doi:10.1021/ja904307n es_ES
dc.description.references Wee, T.-L. (Erika), Schmidt, L. C., & Scaiano, J. C. (2012). Photooxidation of 9-Anthraldehyde Catalyzed by Gold Nanoparticles: Solution and Single Nanoparticle Studies Using Fluorescence Lifetime Imaging. The Journal of Physical Chemistry C, 116(45), 24373-24379. doi:10.1021/jp308956y es_ES
dc.description.references Carrillo, A. I., Schmidt, L. C., Marín, M. L., & Scaiano, J. C. (2014). Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions. Catal. Sci. Technol., 4(2), 435-440. doi:10.1039/c3cy00773a es_ES
dc.description.references Del Pozo, C., Corma, A., Iglesias, M., & Sánchez, F. (2011). Recyclable mesoporous silica-supported chiral ruthenium-(NHC)NN-pincer catalysts for asymmetric reactions. Green Chemistry, 13(9), 2471. doi:10.1039/c1gc15412e es_ES
dc.description.references HAJEK, J. (2003). Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 251(2), 385-396. doi:10.1016/s0926-860x(03)00345-4 es_ES
dc.description.references Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r es_ES
dc.description.references Szadkowska, A., Samojłowicz, C., & Grela, K. (2011). Enhancement of ruthenium-catalyzed olefin metathesis reactions: Searching for new catalyst or new reaction conditions? Pure and Applied Chemistry, 83(3), 553-563. doi:10.1351/pac-con-10-09-10 es_ES
dc.description.references Lara, P., Philippot, K., & Chaudret, B. (2012). Organometallic Ruthenium Nanoparticles: A Comparative Study of the Influence of the Stabilizer on their Characteristics and Reactivity. ChemCatChem, 5(1), 28-45. doi:10.1002/cctc.201200666 es_ES
dc.description.references R. H. Grubbs , Handbook of Metathesis, Wiley-VCH, Weinheim, 2003 es_ES
dc.description.references Jansat, S., Picurelli, D., Pelzer, K., Philippot, K., Gómez, M., Muller, G., … Chaudret, B. (2006). Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands. New J. Chem., 30(1), 115-122. doi:10.1039/b509378c es_ES
dc.description.references Salas, G., Campbell, P. S., Santini, C. C., Philippot, K., Costa Gomes, M. F., & Pádua, A. A. H. (2012). Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids. Dalton Transactions, 41(45), 13919. doi:10.1039/c2dt31644g es_ES
dc.description.references Davies, I. W., Matty, L., Hughes, D. L., & Reider, P. J. (2001). Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts? Journal of the American Chemical Society, 123(41), 10139-10140. doi:10.1021/ja016877v es_ES
dc.description.references Montoya, L. A., & Pluth, M. D. (2012). Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chemical Communications, 48(39), 4767. doi:10.1039/c2cc30730h es_ES
dc.description.references Larsen, J. W., Freund, M., Kim, K. Y., Sidovar, M., & Stuart, J. L. (2000). Mechanism of the carbon catalyzed reduction of nitrobenzene by hydrazine. Carbon, 38(5), 655-661. doi:10.1016/s0008-6223(99)00155-4 es_ES
dc.description.references Al-Soufi, W., Reija, B., Novo, M., Felekyan, S., Kühnemuth, R., & Seidel, C. A. M. (2005). Fluorescence Correlation Spectroscopy, a Tool to Investigate Supramolecular Dynamics:  Inclusion Complexes of Pyronines with Cyclodextrin. Journal of the American Chemical Society, 127(24), 8775-8784. doi:10.1021/ja0508976 es_ES
dc.description.references Witham, C. A., Huang, W., Tsung, C.-K., Kuhn, J. N., Somorjai, G. A., & Toste, F. D. (2009). Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chemistry, 2(1), 36-41. doi:10.1038/nchem.468 es_ES
dc.description.references Nishina, Y., Miyata, J., Kawai, R., & Gotoh, K. (2012). Recyclable Pd–graphene catalyst: mechanistic insights into heterogeneous and homogeneous catalysis. RSC Advances, 2(25), 9380. doi:10.1039/c2ra21185h es_ES
dc.description.references Nørskov, J. K., Bligaard, T., Rossmeisl, J., & Christensen, C. H. (2009). Towards the computational design of solid catalysts. Nature Chemistry, 1(1), 37-46. doi:10.1038/nchem.121 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem