- -

Ketonic decarboxylation reaction mechanism: A combined experimental and DFT study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ketonic decarboxylation reaction mechanism: A combined experimental and DFT study

Mostrar el registro completo del ítem

Pulido Junquera, MA.; Oliver Tomás, B.; Renz, M.; Boronat Zaragoza, M.; Corma Canós, A. (2013). Ketonic decarboxylation reaction mechanism: A combined experimental and DFT study. ChemSusChem. 6(1):141-151. https://doi.org/10.1002/cssc.201200419

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61529

Ficheros en el ítem

Metadatos del ítem

Título: Ketonic decarboxylation reaction mechanism: A combined experimental and DFT study
Autor: Pulido Junquera, Maria Angeles Oliver Tomás, Borja Renz, Michael Boronat Zaragoza, Mercedes Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
The ketonic decarboxylation of carboxylic acids has been carried out experimentally and studied theoretically by DFT calculations. In the experiments, monoclinic zirconia was identified as a good catalyst, giving high ...[+]
Palabras clave: ab initio calculations , biomass , carboxylic acids , heterogeneous catalysis , ketones
Derechos de uso: Cerrado
Fuente:
ChemSusChem. (issn: 1864-5631 ) (eissn: 1864-564X )
DOI: 10.1002/cssc.201200419
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cssc.201200419
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ /
info:eu-repo/grantAgreement/CSIC//2010RU0108/
info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/MINECO//MAT2011-28009/ES/CATALIZADORES MONO- Y MULTIFUNCIONALES BASADOS EN NANOPARTICULAS METALICAS DIRIGIDOS A TRANSFORMACIONES SECUENCIALES O REACCIONES EN CASCADA/
Agradecimientos:
We thank MINECO (MAT2011-28009, Consolider Ingenio 2010-MULTICAT, CSD2009-00050 and CTQ2011-27550) and the Spanish National Research Council (CSIC, Es 2010RU0108) for funding. Red Espanola de Supercomputacion (RES) and ...[+]
Tipo: Artículo

References

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103

Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. doi:10.1039/c004654j [+]
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103

Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. doi:10.1039/c004654j

S. L. Malhotra R. W. Wong M. P. Breton Xerox Corporation 2002

A. D. Tomlinson Unilever PLC 2001

W. Seipel H. Hensen N. Boyxen Cognis Deutschland GmbH 2001

Friedel, C. (1858). Ueber s. g. gemischte Acetone. Annalen der Chemie und Pharmacie, 108(1), 122-125. doi:10.1002/jlac.18581080124

H. Froehlich M. Schneider W. Himmele M. Strohmeyer G. Sandrock K. Baer 1979

Neunhoeffer, O., & Paschke, P. (1939). Über den Mechanismus der Ketonbildung aus Carbonsäuren. Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(4), 919-929. doi:10.1002/cber.19390720442

Bayer & Co 1911

C. A. Smith L. F. Theiling   Jr. 1979

Rand, L., Wagner, W., Warner, P. O., & Kovac, L. R. (1962). Reactions Catalyzed by Potassium Fluoride. II. The Conversion of Adipic Acid to Cyclopentanone. The Journal of Organic Chemistry, 27(3), 1034-1035. doi:10.1021/jo01050a504

V. I. Yakerson A. M. Rubinshtein L. A. Gorskaya 1970

Renz, M. (2005). Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. European Journal of Organic Chemistry, 2005(6), 979-988. doi:10.1002/ejoc.200400546

H. Lermer W. Hoelderich M. Schwarzmann 1986

Serrano-Ruiz, J. C., Wang, D., & Dumesic, J. A. (2010). Catalytic upgrading of levulinic acid to 5-nonanone. Green Chemistry, 12(4), 574. doi:10.1039/b923907c

W. A. Beavers 2007

Gliński, M., Kijeński, J., & Jakubowski, A. (1995). Ketones from monocarboxylic acids: Catalytic ketonization over oxide systems. Applied Catalysis A: General, 128(2), 209-217. doi:10.1016/0926-860x(95)00082-8

A. Westfechtel C. Breucker B. Gutsche L. Jeromin H. Eierdanz H. Baumann K. H. Schmid W. Nonnenkamp 1993

Martinez, R. (2004). Ketonization of acetic acid on titania-functionalized silica monoliths. Journal of Catalysis, 222(2), 404-409. doi:10.1016/j.jcat.2003.12.002

Parida, K., & Mishra, H. K. (1999). Catalytic ketonisation of acetic acid over modified zirconia. Journal of Molecular Catalysis A: Chemical, 139(1), 73-80. doi:10.1016/s1381-1169(98)00184-8

Ignatchenko, A. V., & Kozliak, E. I. (2012). Distinguishing Enolic and Carbonyl Components in the Mechanism of Carboxylic Acid Ketonization on Monoclinic Zirconia. ACS Catalysis, 2(8), 1555-1562. doi:10.1021/cs3002989

Miller, A. L., Cook, N. C., & Whitmore, F. C. (1950). The Ketonic Decarboxylation Reaction1: The Ketonic Decarboxylation of Trimethylacetic Acid2and Isobutyric Acid. Journal of the American Chemical Society, 72(6), 2732-2735. doi:10.1021/ja01162a107

Sugiyama, S., Sato, K., Yamasaki, S., Kawashiro, K., & Hayashi, H. (1992). Ketones from carboxylic acids over supported magnesium oxide and related catalysts. Catalysis Letters, 14(1), 127-133. doi:10.1007/bf00764227

Pestman, R., Koster, R. M., van Duijne, A., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides. Journal of Catalysis, 168(2), 265-272. doi:10.1006/jcat.1997.1624

Cowan, D. M., Jeffery, G. H., & Vogel, A. I. (1940). 31. Physical properties and chemical constitution. Part V. Alkyl ketones. Journal of the Chemical Society (Resumed), 171. doi:10.1039/jr9400000171

G. P. Hussmann 1988

Müller-Erlwein, E., & Rosenberger, F. B. (1990). Heterogen katalysierte Ketonisierung von Laurin- und Stearinsäure in der Gasphase. Chemie Ingenieur Technik, 62(6), 512-513. doi:10.1002/cite.330620621

F. Wattimena 1983

Rajadurai, S. (1994). Pathways for Carboxylic Acid Decomposition on Transition Metal Oxides. Catalysis Reviews, 36(3), 385-403. doi:10.1080/01614949408009466

Cressely, J., Farkhani, D., Deluzarche, A., & Kiennemann, A. (1984). Evolution des especes carboxylates dans le cadre des syntheses CO-H2. Reduction de l’acide acetique sur systeme Co, Cu, Fe. Materials Chemistry and Physics, 11(5), 413-431. doi:10.1016/0254-0584(84)90065-8

KURIACOSE, J. (1977). Studies on the surface interaction of acetic acid on iron oxide. Journal of Catalysis, 50(2), 330-341. doi:10.1016/0021-9517(77)90042-2

LORENZELLI, V. (1980). Infrared study of the surface reactivity of hematite. Journal of Catalysis, 66(1), 28-35. doi:10.1016/0021-9517(80)90004-4

Müller-Erlwein, E. (1990). Heterogen katalysierte Ketonisierung von Laurin- und Stearinsäure in Flüssigphase. Chemie Ingenieur Technik, 62(5), 416-417. doi:10.1002/cite.330620518

Gooßen, L. J., Mamone, P., & Oppel, C. (2010). Catalytic Decarboxylative Cross-Ketonisation of Aryl- and Alkylcarboxylic Acids using Magnetite Nanoparticles. Advanced Synthesis & Catalysis, 353(1), 57-63. doi:10.1002/adsc.201000429

Hites, R. A., & Biemann, K. (1972). Mechanism of ketonic decarboxylation. Pyrolysis of calcium decanoate. Journal of the American Chemical Society, 94(16), 5772-5777. doi:10.1021/ja00771a039

Ignatchenko, A., Nealon, D. G., Dushane, R., & Humphries, K. (2006). Interaction of water with titania and zirconia surfaces. Journal of Molecular Catalysis A: Chemical, 256(1-2), 57-74. doi:10.1016/j.molcata.2006.04.031

Ignatchenko, A. V. (2011). Density Functional Theory Study of Carboxylic Acids Adsorption and Enolization on Monoclinic Zirconia Surfaces. The Journal of Physical Chemistry C, 115(32), 16012-16018. doi:10.1021/jp203381h

Korhonen, S. T., Calatayud, M., & Krause, A. O. I. (2008). Stability of Hydroxylated (1̄11) and (1̄01) Surfaces of Monoclinic Zirconia:  A Combined Study by DFT and Infrared Spectroscopy. The Journal of Physical Chemistry C, 112(16), 6469-6476. doi:10.1021/jp8008546

SERRANORUIZ, J., LUETTICH, J., SEPULVEDAESCRIBANO, A., & RODRIGUEZREINOSO, F. (2006). Effect of the support composition on the vapor-phase hydrogenation of crotonaldehyde over Pt/CexZr1−xO2 catalysts. Journal of Catalysis, 241(1), 45-55. doi:10.1016/j.jcat.2006.04.006

Murnaghan, F. D. (1944). The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247. doi:10.1073/pnas.30.9.244

Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi:10.1103/physrev.71.809

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244

Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671-6687. doi:10.1103/physrevb.46.6671

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Christensen, A., & Carter, E. A. (1998). First-principles study of the surfaces of zirconia. Physical Review B, 58(12), 8050-8064. doi:10.1103/physrevb.58.8050

Henkelman, G., & Jónsson, H. (1999). A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. The Journal of Chemical Physics, 111(15), 7010-7022. doi:10.1063/1.480097

Henkelman, G., & Jónsson, H. (2000). Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113(22), 9978-9985. doi:10.1063/1.1323224

Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344

http://toc.uni-muenster.de/DFTD3/

Barteau, M. A. (1996). Organic Reactions at Well-Defined Oxide Surfaces. Chemical Reviews, 96(4), 1413-1430. doi:10.1021/cr950222t

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem