Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d
Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103
Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. doi:10.1039/c004654j
[+]
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d
Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103
Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. doi:10.1039/c004654j
S. L. Malhotra R. W. Wong M. P. Breton Xerox Corporation 2002
A. D. Tomlinson Unilever PLC 2001
W. Seipel H. Hensen N. Boyxen Cognis Deutschland GmbH 2001
Friedel, C. (1858). Ueber s. g. gemischte Acetone. Annalen der Chemie und Pharmacie, 108(1), 122-125. doi:10.1002/jlac.18581080124
H. Froehlich M. Schneider W. Himmele M. Strohmeyer G. Sandrock K. Baer 1979
Neunhoeffer, O., & Paschke, P. (1939). Über den Mechanismus der Ketonbildung aus Carbonsäuren. Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(4), 919-929. doi:10.1002/cber.19390720442
Bayer & Co 1911
C. A. Smith L. F. Theiling Jr. 1979
Rand, L., Wagner, W., Warner, P. O., & Kovac, L. R. (1962). Reactions Catalyzed by Potassium Fluoride. II. The Conversion of Adipic Acid to Cyclopentanone. The Journal of Organic Chemistry, 27(3), 1034-1035. doi:10.1021/jo01050a504
V. I. Yakerson A. M. Rubinshtein L. A. Gorskaya 1970
Renz, M. (2005). Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. European Journal of Organic Chemistry, 2005(6), 979-988. doi:10.1002/ejoc.200400546
H. Lermer W. Hoelderich M. Schwarzmann 1986
Serrano-Ruiz, J. C., Wang, D., & Dumesic, J. A. (2010). Catalytic upgrading of levulinic acid to 5-nonanone. Green Chemistry, 12(4), 574. doi:10.1039/b923907c
W. A. Beavers 2007
Gliński, M., Kijeński, J., & Jakubowski, A. (1995). Ketones from monocarboxylic acids: Catalytic ketonization over oxide systems. Applied Catalysis A: General, 128(2), 209-217. doi:10.1016/0926-860x(95)00082-8
A. Westfechtel C. Breucker B. Gutsche L. Jeromin H. Eierdanz H. Baumann K. H. Schmid W. Nonnenkamp 1993
Martinez, R. (2004). Ketonization of acetic acid on titania-functionalized silica monoliths. Journal of Catalysis, 222(2), 404-409. doi:10.1016/j.jcat.2003.12.002
Parida, K., & Mishra, H. K. (1999). Catalytic ketonisation of acetic acid over modified zirconia. Journal of Molecular Catalysis A: Chemical, 139(1), 73-80. doi:10.1016/s1381-1169(98)00184-8
Ignatchenko, A. V., & Kozliak, E. I. (2012). Distinguishing Enolic and Carbonyl Components in the Mechanism of Carboxylic Acid Ketonization on Monoclinic Zirconia. ACS Catalysis, 2(8), 1555-1562. doi:10.1021/cs3002989
Miller, A. L., Cook, N. C., & Whitmore, F. C. (1950). The Ketonic Decarboxylation Reaction1: The Ketonic Decarboxylation of Trimethylacetic Acid2and Isobutyric Acid. Journal of the American Chemical Society, 72(6), 2732-2735. doi:10.1021/ja01162a107
Sugiyama, S., Sato, K., Yamasaki, S., Kawashiro, K., & Hayashi, H. (1992). Ketones from carboxylic acids over supported magnesium oxide and related catalysts. Catalysis Letters, 14(1), 127-133. doi:10.1007/bf00764227
Pestman, R., Koster, R. M., van Duijne, A., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides. Journal of Catalysis, 168(2), 265-272. doi:10.1006/jcat.1997.1624
Cowan, D. M., Jeffery, G. H., & Vogel, A. I. (1940). 31. Physical properties and chemical constitution. Part V. Alkyl ketones. Journal of the Chemical Society (Resumed), 171. doi:10.1039/jr9400000171
G. P. Hussmann 1988
Müller-Erlwein, E., & Rosenberger, F. B. (1990). Heterogen katalysierte Ketonisierung von Laurin- und Stearinsäure in der Gasphase. Chemie Ingenieur Technik, 62(6), 512-513. doi:10.1002/cite.330620621
F. Wattimena 1983
Rajadurai, S. (1994). Pathways for Carboxylic Acid Decomposition on Transition Metal Oxides. Catalysis Reviews, 36(3), 385-403. doi:10.1080/01614949408009466
Cressely, J., Farkhani, D., Deluzarche, A., & Kiennemann, A. (1984). Evolution des especes carboxylates dans le cadre des syntheses CO-H2. Reduction de l’acide acetique sur systeme Co, Cu, Fe. Materials Chemistry and Physics, 11(5), 413-431. doi:10.1016/0254-0584(84)90065-8
KURIACOSE, J. (1977). Studies on the surface interaction of acetic acid on iron oxide. Journal of Catalysis, 50(2), 330-341. doi:10.1016/0021-9517(77)90042-2
LORENZELLI, V. (1980). Infrared study of the surface reactivity of hematite. Journal of Catalysis, 66(1), 28-35. doi:10.1016/0021-9517(80)90004-4
Müller-Erlwein, E. (1990). Heterogen katalysierte Ketonisierung von Laurin- und Stearinsäure in Flüssigphase. Chemie Ingenieur Technik, 62(5), 416-417. doi:10.1002/cite.330620518
Gooßen, L. J., Mamone, P., & Oppel, C. (2010). Catalytic Decarboxylative Cross-Ketonisation of Aryl- and Alkylcarboxylic Acids using Magnetite Nanoparticles. Advanced Synthesis & Catalysis, 353(1), 57-63. doi:10.1002/adsc.201000429
Hites, R. A., & Biemann, K. (1972). Mechanism of ketonic decarboxylation. Pyrolysis of calcium decanoate. Journal of the American Chemical Society, 94(16), 5772-5777. doi:10.1021/ja00771a039
Ignatchenko, A., Nealon, D. G., Dushane, R., & Humphries, K. (2006). Interaction of water with titania and zirconia surfaces. Journal of Molecular Catalysis A: Chemical, 256(1-2), 57-74. doi:10.1016/j.molcata.2006.04.031
Ignatchenko, A. V. (2011). Density Functional Theory Study of Carboxylic Acids Adsorption and Enolization on Monoclinic Zirconia Surfaces. The Journal of Physical Chemistry C, 115(32), 16012-16018. doi:10.1021/jp203381h
Korhonen, S. T., Calatayud, M., & Krause, A. O. I. (2008). Stability of Hydroxylated (1̄11) and (1̄01) Surfaces of Monoclinic Zirconia: A Combined Study by DFT and Infrared Spectroscopy. The Journal of Physical Chemistry C, 112(16), 6469-6476. doi:10.1021/jp8008546
SERRANORUIZ, J., LUETTICH, J., SEPULVEDAESCRIBANO, A., & RODRIGUEZREINOSO, F. (2006). Effect of the support composition on the vapor-phase hydrogenation of crotonaldehyde over Pt/CexZr1−xO2 catalysts. Journal of Catalysis, 241(1), 45-55. doi:10.1016/j.jcat.2006.04.006
Murnaghan, F. D. (1944). The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247. doi:10.1073/pnas.30.9.244
Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi:10.1103/physrev.71.809
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169
Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244
Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671-6687. doi:10.1103/physrevb.46.6671
Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953
Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758
Christensen, A., & Carter, E. A. (1998). First-principles study of the surfaces of zirconia. Physical Review B, 58(12), 8050-8064. doi:10.1103/physrevb.58.8050
Henkelman, G., & Jónsson, H. (1999). A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. The Journal of Chemical Physics, 111(15), 7010-7022. doi:10.1063/1.480097
Henkelman, G., & Jónsson, H. (2000). Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113(22), 9978-9985. doi:10.1063/1.1323224
Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344
http://toc.uni-muenster.de/DFTD3/
Barteau, M. A. (1996). Organic Reactions at Well-Defined Oxide Surfaces. Chemical Reviews, 96(4), 1413-1430. doi:10.1021/cr950222t
[-]