Green, A. A., & Hersam, M. C. (2011). Properties and Application of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. ACS Nano, 5(2), 1459-1467. doi:10.1021/nn103263b
Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G. C., & Espinosa, H. D. (2008). Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3(10), 626-631. doi:10.1038/nnano.2008.211
Liu, K., Wang, W., Xu, Z., Bai, X., Wang, E., Yao, Y., … Liu, Z. (2009). Chirality-Dependent Transport Properties of Double-Walled Nanotubes Measured in Situ on Their Field-Effect Transistors. Journal of the American Chemical Society, 131(1), 62-63. doi:10.1021/ja808593v
[+]
Green, A. A., & Hersam, M. C. (2011). Properties and Application of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. ACS Nano, 5(2), 1459-1467. doi:10.1021/nn103263b
Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G. C., & Espinosa, H. D. (2008). Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3(10), 626-631. doi:10.1038/nnano.2008.211
Liu, K., Wang, W., Xu, Z., Bai, X., Wang, E., Yao, Y., … Liu, Z. (2009). Chirality-Dependent Transport Properties of Double-Walled Nanotubes Measured in Situ on Their Field-Effect Transistors. Journal of the American Chemical Society, 131(1), 62-63. doi:10.1021/ja808593v
Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M., & Dresselhaus, M. S. (2004). Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. Chemical Physics Letters, 398(1-3), 87-92. doi:10.1016/j.cplett.2004.09.024
Bouilly, D., Cabana, J., Meunier, F., Desjardins-Carrière, M., Lapointe, F., Gagnon, P., … Martel, R. (2011). Wall-Selective Probing of Double-Walled Carbon Nanotubes Using Covalent Functionalization. ACS Nano, 5(6), 4927-4934. doi:10.1021/nn201024u
Hayashi, T., Shimamoto, D., Kim, Y. A., Muramatsu, H., Okino, F., Touhara, H., … Endo, M. (2008). Selective Optical Property Modification of Double-Walled Carbon Nanotubes by Fluorination. ACS Nano, 2(3), 485-488. doi:10.1021/nn700391w
Piao, Y., Chen, C.-F., Green, A. A., Kwon, H., Hersam, M. C., Lee, C. S., … Wang, Y. (2011). Optical and Electrical Properties of Inner Tubes in Outer Wall-Selectively Functionalized Double-Wall Carbon Nanotubes. The Journal of Physical Chemistry Letters, 2(13), 1577-1582. doi:10.1021/jz200687u
Huang, J., Ng, A. L., Piao, Y., Chen, C.-F., Green, A. A., Sun, C.-F., … Wang, Y. (2013). Covalently Functionalized Double-Walled Carbon Nanotubes Combine High Sensitivity and Selectivity in the Electrical Detection of Small Molecules. Journal of the American Chemical Society, 135(6), 2306-2312. doi:10.1021/ja310844u
Shen, C., Brozena, A. H., & Wang, Y. (2011). Double-walled carbon nanotubes: Challenges and opportunities. Nanoscale, 3(2), 503-518. doi:10.1039/c0nr00620c
Kalbac, M., Green, A. A., Hersam, M. C., & Kavan, L. (2011). Probing Charge Transfer between Shells of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. Chemistry - A European Journal, 17(35), 9806-9815. doi:10.1002/chem.201100590
Koyama, T., Asada, Y., Hikosaka, N., Miyata, Y., Shinohara, H., & Nakamura, A. (2011). Ultrafast Exciton Energy Transfer between Nanoscale Coaxial Cylinders: Intertube Transfer and Luminescence Quenching in Double-Walled Carbon Nanotubes. ACS Nano, 5(7), 5881-5887. doi:10.1021/nn201661q
Vizuete, M., Gómez-Escalonilla, M. J., García-Rodriguez, S., Fierro, J. L. G., Atienzar, P., García, H., & Langa, F. (2012). Photochemical Evidence of Electronic Interwall Communication in Double-Wall Carbon Nanotubes. Chemistry - A European Journal, 18(52), 16922-16930. doi:10.1002/chem.201202000
Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Troiani, V., Garcia, H., … Echegoyen, L. (2006). Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 128(20), 6626-6635. doi:10.1021/ja057742i
Casey, J. P., Bachilo, S. M., & Weisman, R. B. (2008). Efficient photosensitized energy transfer and near-IR fluorescence from porphyrin–SWNT complexes. Journal of Materials Chemistry, 18(13), 1510. doi:10.1039/b716649d
Roquelet, C., Langlois, B., Vialla, F., Garrot, D., Lauret, J. S., & Voisin, C. (2013). Light harvesting with non covalent carbon nanotube/porphyrin compounds. Chemical Physics, 413, 45-54. doi:10.1016/j.chemphys.2012.09.004
Aurisicchio, C., Marega, R., Corvaglia, V., Mohanraj, J., Delamare, R., Vlad, D. A., … Bonifazi, D. (2012). CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrin-DWCNTs Hybrid Materials. Advanced Functional Materials, 22(15), 3209-3222. doi:10.1002/adfm.201102632
Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Garcia, H., & Langa, F. (2004). Synthesis and photochemistry of soluble, pentyl ester-modified single wall carbon nanotube. Chemical Physics Letters, 386(4-6), 342-345. doi:10.1016/j.cplett.2004.01.087
Langa, F., de la Cruz, P., Espíldora, E., González-Cortés, A., de la Hoz, A., & López-Arza, V. (2000). Synthesis and Properties of Isoxazolo[60]fullerene−Donor Dyads†. The Journal of Organic Chemistry, 65(25), 8675-8684. doi:10.1021/jo0010532
Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., & Dresselhaus, M. S. (2011). Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 60(3), 413-550. doi:10.1080/00018732.2011.582251
Dillon, E. P., Crouse, C. A., & Barron, A. R. (2008). Synthesis, Characterization, and Carbon Dioxide Adsorption of Covalently Attached Polyethyleneimine-Functionalized Single-Wall Carbon Nanotubes. ACS Nano, 2(1), 156-164. doi:10.1021/nn7002713
Giordani, S., Colomer, J.-F., Cattaruzza, F., Alfonsi, J., Meneghetti, M., Prato, M., & Bonifazi, D. (2009). Multifunctional hybrid materials composed of [60]fullerene-based functionalized-single-walled carbon nanotubes. Carbon, 47(3), 578-588. doi:10.1016/j.carbon.2008.10.036
Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H., & Gale, L. H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surface and Interface Analysis, 3(5), 211-225. doi:10.1002/sia.740030506
Criado, A., Gómez-Escalonilla, M. J., Fierro, J. L. G., Urbina, A., Peña, D., Guitián, E., & Langa, F. (2010). Cycloaddition of benzyne to SWCNT: towards CNT-based paddle wheels. Chemical Communications, 46(37), 7028. doi:10.1039/c0cc01907k
Gómez-Escalonilla, M. J., Atienzar, P., Garcia Fierro, J. L., García, H., & Langa, F. (2008). Heck reaction on single-walled carbon nanotubes. Synthesis and photochemical properties of a wall functionalized SWNT-anthracene derivative. Journal of Materials Chemistry, 18(13), 1592. doi:10.1039/b717011d
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034
Brozena, A. H., Moskowitz, J., Shao, B., Deng, S., Liao, H., Gaskell, K. J., & Wang, Y. (2010). Outer Wall Selectively Oxidized, Water-Soluble Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 132(11), 3932-3938. doi:10.1021/ja910626u
Flavin, K., Lawrence, K., Bartelmess, J., Tasior, M., Navio, C., Bittencourt, C., … Giordani, S. (2011). Synthesis and Characterization of Boron Azadipyrromethene Single-Wall Carbon Nanotube Electron Donor−Acceptor Conjugates. ACS Nano, 5(2), 1198-1206. doi:10.1021/nn102831x
Bhyrappa, P., Krishnan, V., & Nethaji, M. (1993). Solvation and axial ligation properties of (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrinato)zinc(II). Journal of the Chemical Society, Dalton Transactions, (12), 1901. doi:10.1039/dt9930001901
Mizutani, T., Wada, K., & Kitagawa, S. (1999). Porphyrin Receptors for Amines, Amino Acids, and Oligopeptides in Water. Journal of the American Chemical Society, 121(49), 11425-11431. doi:10.1021/ja9922126
D’Souza, F., Smith, P. M., Gadde, S., McCarty, A. L., Kullman, M. J., Zandler, M. E., … Ito, O. (2004). Supramolecular Triads Formed by Axial Coordination of Fullerene to Covalently Linked Zinc Porphyrin−Ferrocene(s): Design, Syntheses, Electrochemistry, and Photochemistry. The Journal of Physical Chemistry B, 108(31), 11333-11343. doi:10.1021/jp0485688
Imai, H., Munakata, H., Takahashi, A., Nakagawa, S., & Uemori, Y. (1997). Synthesis and Axial-Ligand Binding of Zinc Complexes of Amphiphilic Porphyrins Containing a Hydrophobic Binding Pocket. Chemistry Letters, 26(8), 819-820. doi:10.1246/cl.1997.819
Xu, W., Feng, L., Wu, Y., Wang, T., Wu, J., Xiang, J., … Wang, C. (2011). Construction and photophysics study of supramolecular complexes composed of three-point binding fullerene-trispyridylporphyrin dyads and zinc porphyrin. Phys. Chem. Chem. Phys., 13(2), 428-433. doi:10.1039/c0cp01076f
Armaroli, N., Diederich, F., Echegoyen, L., Habicher, T., Flamigni, L., Marconi, G., & Nierengarten, J.-F. (1999). A new pyridyl-substituted methanofullerene derivative. Photophysics, electrochemistry and self-assembly with zinc(II) meso-tetraphenylporphyrin (ZnTPP). New Journal of Chemistry, 23(1), 77-83. doi:10.1039/a807400c
D’Souza, F., & Ito, O. (2005). Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines. Coordination Chemistry Reviews, 249(13-14), 1410-1422. doi:10.1016/j.ccr.2005.01.002
Kuramochi, Y., Sandanayaka, A. S. D., Satake, A., Araki, Y., Ogawa, K., Ito, O., & Kobuke, Y. (2009). Energy Transfer Followed by Electron Transfer in a Porphyrin Macrocycle and Central Acceptor Ligand: A Model for a Photosynthetic Composite of the Light-Harvesting Complex and Reaction Center. Chemistry - A European Journal, 15(10), 2317-2327. doi:10.1002/chem.200801796
Chi, X., Guerin, A. J., Haycock, R. A., Hunter, C. A., & Sarson, L. D. (1995). Self-assembly of macrocyclic porphyrin oligomers. Journal of the Chemical Society, Chemical Communications, (24), 2567. doi:10.1039/c39950002567
Aprile, C., Martín, R., Alvaro, M., Garcia, H., & Scaiano, J. C. (2009). Covalent Functionalization of Short, Single-Wall Carbon Nanotubes: Photophysics of 2,4,6-Triphenylpyrylium Attached to the Nanotube Walls. Chemistry of Materials, 21(5), 884-890. doi:10.1021/cm803037g
Álvaro, M., Atienzar, P., Bourdelande, J. L., & García, H. (2002). Photochemistry of single wall carbon nanotubes embedded in a mesoporous silica matrix. Chem. Commun., (24), 3004-3005. doi:10.1039/b209225p
Banerjee, S., & Wong, S. S. (2002). Structural Characterization, Optical Properties, and Improved Solubility of Carbon Nanotubes Functionalized with Wilkinson’s Catalyst. Journal of the American Chemical Society, 124(30), 8940-8948. doi:10.1021/ja026487o
Guldi, D. M., Holzinger, M., Hirsch, A., Georgakilas, V., & Prato, M. (2003). First comparative emission assay of single-wall carbon nanotubes—solutions and dispersions. Chemical Communications, (10), 1130-1131. doi:10.1039/b301422c
El-Khouly, M. E., Ito, O., Smith, P. M., & D’Souza, F. (2004). Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 5(1), 79-104. doi:10.1016/j.jphotochemrev.2004.01.003
Kuciauskas, D., Lin, S., Seely, G. R., Moore, A. L., Moore, T. A., Gust, D., … Boyd, P. D. W. (1996). Energy and Photoinduced Electron Transfer in Porphyrin−Fullerene Dyads. The Journal of Physical Chemistry, 100(39), 15926-15932. doi:10.1021/jp9612745
[-]