- -

Double-wall carbon nanotube-porphyrin supramolecular hybrid: Synthesis and photophysical studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Double-wall carbon nanotube-porphyrin supramolecular hybrid: Synthesis and photophysical studies

Mostrar el registro completo del ítem

Vizuete, M.; Gómez-Escalonilla, MJ.; García Fierro, JL.; Atienzar Corvillo, PE.; García Gómez, H.; Langa, F. (2014). Double-wall carbon nanotube-porphyrin supramolecular hybrid: Synthesis and photophysical studies. ChemPhysChem. 15(1):100-108. https://doi.org/10.1002/cphc.201300839

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61870

Ficheros en el ítem

Metadatos del ítem

Título: Double-wall carbon nanotube-porphyrin supramolecular hybrid: Synthesis and photophysical studies
Autor: Vizuete, Maria Gómez-Escalonilla, Maria J. García Fierro, José Luis Atienzar Corvillo, Pedro Enrique García Gómez, Hermenegildo Langa, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Double-wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties ...[+]
Palabras clave: carbon nanotubes , double-wall carbon nanotubes , energy transfer , photochemistry , porphyrin complexes
Derechos de uso: Cerrado
Fuente:
ChemPhysChem. (issn: 1439-4235 ) (eissn: 1439-7641 )
DOI: 10.1002/cphc.201300839
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cphc.201300839
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CSD2007-00007/ES/Hybrid Optoelectronic and Photovoltaic Devices for Renewable Energy/ /
info:eu-repo/grantAgreement/GVA//GV%2F2012%2F013/
info:eu-repo/grantAgreement/MICINN//PLE2009-0038/ES/Chemically Functionalized Nano-Carbon for Photovoltaic Devices/
info:eu-repo/grantAgreement/MICINN//CTQ2010-17498/ES/DISEÑO Y SINTESIS DE MATERIALES MOLECULARES PARA APLICACIONES OPTOELECTRONICAS/
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
Agradecimientos:
Financial support from the Ministry of Science and Innovation of Spain, (CTQ2010-17498, CTQ2012-32315, PLE2009-0038, as well as Consolider-Ingenio Projects HOPE CSD2007-00007 and MULTI-CAT) is gratefully acknowledged. ...[+]
Tipo: Artículo

References

Green, A. A., & Hersam, M. C. (2011). Properties and Application of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. ACS Nano, 5(2), 1459-1467. doi:10.1021/nn103263b

Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G. C., & Espinosa, H. D. (2008). Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3(10), 626-631. doi:10.1038/nnano.2008.211

Liu, K., Wang, W., Xu, Z., Bai, X., Wang, E., Yao, Y., … Liu, Z. (2009). Chirality-Dependent Transport Properties of Double-Walled Nanotubes Measured in Situ on Their Field-Effect Transistors. Journal of the American Chemical Society, 131(1), 62-63. doi:10.1021/ja808593v [+]
Green, A. A., & Hersam, M. C. (2011). Properties and Application of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. ACS Nano, 5(2), 1459-1467. doi:10.1021/nn103263b

Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G. C., & Espinosa, H. D. (2008). Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3(10), 626-631. doi:10.1038/nnano.2008.211

Liu, K., Wang, W., Xu, Z., Bai, X., Wang, E., Yao, Y., … Liu, Z. (2009). Chirality-Dependent Transport Properties of Double-Walled Nanotubes Measured in Situ on Their Field-Effect Transistors. Journal of the American Chemical Society, 131(1), 62-63. doi:10.1021/ja808593v

Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M., & Dresselhaus, M. S. (2004). Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. Chemical Physics Letters, 398(1-3), 87-92. doi:10.1016/j.cplett.2004.09.024

Bouilly, D., Cabana, J., Meunier, F., Desjardins-Carrière, M., Lapointe, F., Gagnon, P., … Martel, R. (2011). Wall-Selective Probing of Double-Walled Carbon Nanotubes Using Covalent Functionalization. ACS Nano, 5(6), 4927-4934. doi:10.1021/nn201024u

Hayashi, T., Shimamoto, D., Kim, Y. A., Muramatsu, H., Okino, F., Touhara, H., … Endo, M. (2008). Selective Optical Property Modification of Double-Walled Carbon Nanotubes by Fluorination. ACS Nano, 2(3), 485-488. doi:10.1021/nn700391w

Piao, Y., Chen, C.-F., Green, A. A., Kwon, H., Hersam, M. C., Lee, C. S., … Wang, Y. (2011). Optical and Electrical Properties of Inner Tubes in Outer Wall-Selectively Functionalized Double-Wall Carbon Nanotubes. The Journal of Physical Chemistry Letters, 2(13), 1577-1582. doi:10.1021/jz200687u

Huang, J., Ng, A. L., Piao, Y., Chen, C.-F., Green, A. A., Sun, C.-F., … Wang, Y. (2013). Covalently Functionalized Double-Walled Carbon Nanotubes Combine High Sensitivity and Selectivity in the Electrical Detection of Small Molecules. Journal of the American Chemical Society, 135(6), 2306-2312. doi:10.1021/ja310844u

Shen, C., Brozena, A. H., & Wang, Y. (2011). Double-walled carbon nanotubes: Challenges and opportunities. Nanoscale, 3(2), 503-518. doi:10.1039/c0nr00620c

Kalbac, M., Green, A. A., Hersam, M. C., & Kavan, L. (2011). Probing Charge Transfer between Shells of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. Chemistry - A European Journal, 17(35), 9806-9815. doi:10.1002/chem.201100590

Koyama, T., Asada, Y., Hikosaka, N., Miyata, Y., Shinohara, H., & Nakamura, A. (2011). Ultrafast Exciton Energy Transfer between Nanoscale Coaxial Cylinders: Intertube Transfer and Luminescence Quenching in Double-Walled Carbon Nanotubes. ACS Nano, 5(7), 5881-5887. doi:10.1021/nn201661q

Vizuete, M., Gómez-Escalonilla, M. J., García-Rodriguez, S., Fierro, J. L. G., Atienzar, P., García, H., & Langa, F. (2012). Photochemical Evidence of Electronic Interwall Communication in Double-Wall Carbon Nanotubes. Chemistry - A European Journal, 18(52), 16922-16930. doi:10.1002/chem.201202000

Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Troiani, V., Garcia, H., … Echegoyen, L. (2006). Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 128(20), 6626-6635. doi:10.1021/ja057742i

Casey, J. P., Bachilo, S. M., & Weisman, R. B. (2008). Efficient photosensitized energy transfer and near-IR fluorescence from porphyrin–SWNT complexes. Journal of Materials Chemistry, 18(13), 1510. doi:10.1039/b716649d

Roquelet, C., Langlois, B., Vialla, F., Garrot, D., Lauret, J. S., & Voisin, C. (2013). Light harvesting with non covalent carbon nanotube/porphyrin compounds. Chemical Physics, 413, 45-54. doi:10.1016/j.chemphys.2012.09.004

Aurisicchio, C., Marega, R., Corvaglia, V., Mohanraj, J., Delamare, R., Vlad, D. A., … Bonifazi, D. (2012). CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrin-DWCNTs Hybrid Materials. Advanced Functional Materials, 22(15), 3209-3222. doi:10.1002/adfm.201102632

Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Garcia, H., & Langa, F. (2004). Synthesis and photochemistry of soluble, pentyl ester-modified single wall carbon nanotube. Chemical Physics Letters, 386(4-6), 342-345. doi:10.1016/j.cplett.2004.01.087

Langa, F., de la Cruz, P., Espíldora, E., González-Cortés, A., de la Hoz, A., & López-Arza, V. (2000). Synthesis and Properties of Isoxazolo[60]fullerene−Donor Dyads†. The Journal of Organic Chemistry, 65(25), 8675-8684. doi:10.1021/jo0010532

Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., & Dresselhaus, M. S. (2011). Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 60(3), 413-550. doi:10.1080/00018732.2011.582251

Dillon, E. P., Crouse, C. A., & Barron, A. R. (2008). Synthesis, Characterization, and Carbon Dioxide Adsorption of Covalently Attached Polyethyleneimine-Functionalized Single-Wall Carbon Nanotubes. ACS Nano, 2(1), 156-164. doi:10.1021/nn7002713

Giordani, S., Colomer, J.-F., Cattaruzza, F., Alfonsi, J., Meneghetti, M., Prato, M., & Bonifazi, D. (2009). Multifunctional hybrid materials composed of [60]fullerene-based functionalized-single-walled carbon nanotubes. Carbon, 47(3), 578-588. doi:10.1016/j.carbon.2008.10.036

Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H., & Gale, L. H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surface and Interface Analysis, 3(5), 211-225. doi:10.1002/sia.740030506

Criado, A., Gómez-Escalonilla, M. J., Fierro, J. L. G., Urbina, A., Peña, D., Guitián, E., & Langa, F. (2010). Cycloaddition of benzyne to SWCNT: towards CNT-based paddle wheels. Chemical Communications, 46(37), 7028. doi:10.1039/c0cc01907k

Gómez-Escalonilla, M. J., Atienzar, P., Garcia Fierro, J. L., García, H., & Langa, F. (2008). Heck reaction on single-walled carbon nanotubes. Synthesis and photochemical properties of a wall functionalized SWNT-anthracene derivative. Journal of Materials Chemistry, 18(13), 1592. doi:10.1039/b717011d

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034

Brozena, A. H., Moskowitz, J., Shao, B., Deng, S., Liao, H., Gaskell, K. J., & Wang, Y. (2010). Outer Wall Selectively Oxidized, Water-Soluble Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 132(11), 3932-3938. doi:10.1021/ja910626u

Flavin, K., Lawrence, K., Bartelmess, J., Tasior, M., Navio, C., Bittencourt, C., … Giordani, S. (2011). Synthesis and Characterization of Boron Azadipyrromethene Single-Wall Carbon Nanotube Electron Donor−Acceptor Conjugates. ACS Nano, 5(2), 1198-1206. doi:10.1021/nn102831x

Bhyrappa, P., Krishnan, V., & Nethaji, M. (1993). Solvation and axial ligation properties of (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrinato)zinc(II). Journal of the Chemical Society, Dalton Transactions, (12), 1901. doi:10.1039/dt9930001901

Mizutani, T., Wada, K., & Kitagawa, S. (1999). Porphyrin Receptors for Amines, Amino Acids, and Oligopeptides in Water. Journal of the American Chemical Society, 121(49), 11425-11431. doi:10.1021/ja9922126

D’Souza, F., Smith, P. M., Gadde, S., McCarty, A. L., Kullman, M. J., Zandler, M. E., … Ito, O. (2004). Supramolecular Triads Formed by Axial Coordination of Fullerene to Covalently Linked Zinc Porphyrin−Ferrocene(s):  Design, Syntheses, Electrochemistry, and Photochemistry. The Journal of Physical Chemistry B, 108(31), 11333-11343. doi:10.1021/jp0485688

Imai, H., Munakata, H., Takahashi, A., Nakagawa, S., & Uemori, Y. (1997). Synthesis and Axial-Ligand Binding of Zinc Complexes of Amphiphilic Porphyrins Containing a Hydrophobic Binding Pocket. Chemistry Letters, 26(8), 819-820. doi:10.1246/cl.1997.819

Xu, W., Feng, L., Wu, Y., Wang, T., Wu, J., Xiang, J., … Wang, C. (2011). Construction and photophysics study of supramolecular complexes composed of three-point binding fullerene-trispyridylporphyrin dyads and zinc porphyrin. Phys. Chem. Chem. Phys., 13(2), 428-433. doi:10.1039/c0cp01076f

Armaroli, N., Diederich, F., Echegoyen, L., Habicher, T., Flamigni, L., Marconi, G., & Nierengarten, J.-F. (1999). A new pyridyl-substituted methanofullerene derivative. Photophysics, electrochemistry and self-assembly with zinc(II) meso-tetraphenylporphyrin (ZnTPP). New Journal of Chemistry, 23(1), 77-83. doi:10.1039/a807400c

D’Souza, F., & Ito, O. (2005). Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines. Coordination Chemistry Reviews, 249(13-14), 1410-1422. doi:10.1016/j.ccr.2005.01.002

Kuramochi, Y., Sandanayaka, A. S. D., Satake, A., Araki, Y., Ogawa, K., Ito, O., & Kobuke, Y. (2009). Energy Transfer Followed by Electron Transfer in a Porphyrin Macrocycle and Central Acceptor Ligand: A Model for a Photosynthetic Composite of the Light-Harvesting Complex and Reaction Center. Chemistry - A European Journal, 15(10), 2317-2327. doi:10.1002/chem.200801796

Chi, X., Guerin, A. J., Haycock, R. A., Hunter, C. A., & Sarson, L. D. (1995). Self-assembly of macrocyclic porphyrin oligomers. Journal of the Chemical Society, Chemical Communications, (24), 2567. doi:10.1039/c39950002567

Aprile, C., Martín, R., Alvaro, M., Garcia, H., & Scaiano, J. C. (2009). Covalent Functionalization of Short, Single-Wall Carbon Nanotubes: Photophysics of 2,4,6-Triphenylpyrylium Attached to the Nanotube Walls. Chemistry of Materials, 21(5), 884-890. doi:10.1021/cm803037g

Álvaro, M., Atienzar, P., Bourdelande, J. L., & García, H. (2002). Photochemistry of single wall carbon nanotubes embedded in a mesoporous silica matrix. Chem. Commun., (24), 3004-3005. doi:10.1039/b209225p

Banerjee, S., & Wong, S. S. (2002). Structural Characterization, Optical Properties, and Improved Solubility of Carbon Nanotubes Functionalized with Wilkinson’s Catalyst. Journal of the American Chemical Society, 124(30), 8940-8948. doi:10.1021/ja026487o

Guldi, D. M., Holzinger, M., Hirsch, A., Georgakilas, V., & Prato, M. (2003). First comparative emission assay of single-wall carbon nanotubes—solutions and dispersions. Chemical Communications, (10), 1130-1131. doi:10.1039/b301422c

El-Khouly, M. E., Ito, O., Smith, P. M., & D’Souza, F. (2004). Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 5(1), 79-104. doi:10.1016/j.jphotochemrev.2004.01.003

Kuciauskas, D., Lin, S., Seely, G. R., Moore, A. L., Moore, T. A., Gust, D., … Boyd, P. D. W. (1996). Energy and Photoinduced Electron Transfer in Porphyrin−Fullerene Dyads. The Journal of Physical Chemistry, 100(39), 15926-15932. doi:10.1021/jp9612745

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem