- -

Double-wall carbon nanotube-porphyrin supramolecular hybrid: Synthesis and photophysical studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Double-wall carbon nanotube-porphyrin supramolecular hybrid: Synthesis and photophysical studies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vizuete, Maria es_ES
dc.contributor.author Gómez-Escalonilla, Maria J. es_ES
dc.contributor.author García Fierro, José Luis es_ES
dc.contributor.author Atienzar Corvillo, Pedro Enrique es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Langa, F. es_ES
dc.date.accessioned 2016-03-15T10:37:35Z
dc.date.issued 2014-01-13
dc.identifier.issn 1439-4235
dc.identifier.uri http://hdl.handle.net/10251/61870
dc.description.abstract Double-wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties of these modified DWCNTs are then compared with an analogous sample based on single-wall carbon nanotubes (SWCNTs). Raman spectroscopy shows the presence of characteristic radial breathing mode vibrations, confirming that the samples partly retain the integrity of the nanotubes in the case of DWCNTs, including the internal and external nanotubes. Quantification of the pyridyl content for both samples (DWCNT and SWCNT derivatives) is based on X-ray photoelectron spectroscopy and thermogravimetric profiles, showing very similar substituent load. Both pyridyl- containing nanotubes (DWCNTs and SWCNTs) form a complex with zinc porphyrin (ZnP), as evidenced by the presence of two isosbestic points in the absorption spectra of the porphyrin upon addition of the pyridyl-functionalized nanotubes. Supramolecular complexes based on pyridyl-substituted DWCNTs and SWCNTs quench the emission and the triplet excited state identically, through an energy-transfer mechanism based on pre-assembly of the ground state. Thus, the presence of the intact inner wall in DWCNTs does not influence the quenching behavior, with respect to SWCNTs, for energy-transfer quenching with excited ZnP. These results sharply contrast with previous ones referring to electron-transfer quenching, in which the double-wall morphology of the nanotubes has been shown to considerably reduce the lifetime of charge separation, owing to faster electron mobility in DWCNTs compared to SWCNTs. es_ES
dc.description.sponsorship Financial support from the Ministry of Science and Innovation of Spain, (CTQ2010-17498, CTQ2012-32315, PLE2009-0038, as well as Consolider-Ingenio Projects HOPE CSD2007-00007 and MULTI-CAT) is gratefully acknowledged. Funding by the Generalidad Valenciana (Prometeo 2012-013) is also acknowledged. P. A. also thanks the Spanish Ministry of Science and Innovation for a Juan de la Cierva research associate contract. M. V. thanks a grant from the Junta de Comunidades de Castilla-La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemPhysChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject carbon nanotubes es_ES
dc.subject double-wall carbon nanotubes es_ES
dc.subject energy transfer es_ES
dc.subject photochemistry es_ES
dc.subject porphyrin complexes es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Double-wall carbon nanotube-porphyrin supramolecular hybrid: Synthesis and photophysical studies es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cphc.201300839
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00007/ES/Hybrid Optoelectronic and Photovoltaic Devices for Renewable Energy/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2012%2F013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PLE2009-0038/ES/Chemically Functionalized Nano-Carbon for Photovoltaic Devices/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-17498/ES/DISEÑO Y SINTESIS DE MATERIALES MOLECULARES PARA APLICACIONES OPTOELECTRONICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Vizuete, M.; Gómez-Escalonilla, MJ.; García Fierro, JL.; Atienzar Corvillo, PE.; García Gómez, H.; Langa, F. (2014). Double-wall carbon nanotube-porphyrin supramolecular hybrid: Synthesis and photophysical studies. ChemPhysChem. 15(1):100-108. https://doi.org/10.1002/cphc.201300839 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cphc.201300839 es_ES
dc.description.upvformatpinicio 100 es_ES
dc.description.upvformatpfin 108 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 286833 es_ES
dc.identifier.eissn 1439-7641
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Green, A. A., & Hersam, M. C. (2011). Properties and Application of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. ACS Nano, 5(2), 1459-1467. doi:10.1021/nn103263b es_ES
dc.description.references Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G. C., & Espinosa, H. D. (2008). Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3(10), 626-631. doi:10.1038/nnano.2008.211 es_ES
dc.description.references Liu, K., Wang, W., Xu, Z., Bai, X., Wang, E., Yao, Y., … Liu, Z. (2009). Chirality-Dependent Transport Properties of Double-Walled Nanotubes Measured in Situ on Their Field-Effect Transistors. Journal of the American Chemical Society, 131(1), 62-63. doi:10.1021/ja808593v es_ES
dc.description.references Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M., & Dresselhaus, M. S. (2004). Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. Chemical Physics Letters, 398(1-3), 87-92. doi:10.1016/j.cplett.2004.09.024 es_ES
dc.description.references Bouilly, D., Cabana, J., Meunier, F., Desjardins-Carrière, M., Lapointe, F., Gagnon, P., … Martel, R. (2011). Wall-Selective Probing of Double-Walled Carbon Nanotubes Using Covalent Functionalization. ACS Nano, 5(6), 4927-4934. doi:10.1021/nn201024u es_ES
dc.description.references Hayashi, T., Shimamoto, D., Kim, Y. A., Muramatsu, H., Okino, F., Touhara, H., … Endo, M. (2008). Selective Optical Property Modification of Double-Walled Carbon Nanotubes by Fluorination. ACS Nano, 2(3), 485-488. doi:10.1021/nn700391w es_ES
dc.description.references Piao, Y., Chen, C.-F., Green, A. A., Kwon, H., Hersam, M. C., Lee, C. S., … Wang, Y. (2011). Optical and Electrical Properties of Inner Tubes in Outer Wall-Selectively Functionalized Double-Wall Carbon Nanotubes. The Journal of Physical Chemistry Letters, 2(13), 1577-1582. doi:10.1021/jz200687u es_ES
dc.description.references Huang, J., Ng, A. L., Piao, Y., Chen, C.-F., Green, A. A., Sun, C.-F., … Wang, Y. (2013). Covalently Functionalized Double-Walled Carbon Nanotubes Combine High Sensitivity and Selectivity in the Electrical Detection of Small Molecules. Journal of the American Chemical Society, 135(6), 2306-2312. doi:10.1021/ja310844u es_ES
dc.description.references Shen, C., Brozena, A. H., & Wang, Y. (2011). Double-walled carbon nanotubes: Challenges and opportunities. Nanoscale, 3(2), 503-518. doi:10.1039/c0nr00620c es_ES
dc.description.references Kalbac, M., Green, A. A., Hersam, M. C., & Kavan, L. (2011). Probing Charge Transfer between Shells of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type. Chemistry - A European Journal, 17(35), 9806-9815. doi:10.1002/chem.201100590 es_ES
dc.description.references Koyama, T., Asada, Y., Hikosaka, N., Miyata, Y., Shinohara, H., & Nakamura, A. (2011). Ultrafast Exciton Energy Transfer between Nanoscale Coaxial Cylinders: Intertube Transfer and Luminescence Quenching in Double-Walled Carbon Nanotubes. ACS Nano, 5(7), 5881-5887. doi:10.1021/nn201661q es_ES
dc.description.references Vizuete, M., Gómez-Escalonilla, M. J., García-Rodriguez, S., Fierro, J. L. G., Atienzar, P., García, H., & Langa, F. (2012). Photochemical Evidence of Electronic Interwall Communication in Double-Wall Carbon Nanotubes. Chemistry - A European Journal, 18(52), 16922-16930. doi:10.1002/chem.201202000 es_ES
dc.description.references Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Troiani, V., Garcia, H., … Echegoyen, L. (2006). Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 128(20), 6626-6635. doi:10.1021/ja057742i es_ES
dc.description.references Casey, J. P., Bachilo, S. M., & Weisman, R. B. (2008). Efficient photosensitized energy transfer and near-IR fluorescence from porphyrin–SWNT complexes. Journal of Materials Chemistry, 18(13), 1510. doi:10.1039/b716649d es_ES
dc.description.references Roquelet, C., Langlois, B., Vialla, F., Garrot, D., Lauret, J. S., & Voisin, C. (2013). Light harvesting with non covalent carbon nanotube/porphyrin compounds. Chemical Physics, 413, 45-54. doi:10.1016/j.chemphys.2012.09.004 es_ES
dc.description.references Aurisicchio, C., Marega, R., Corvaglia, V., Mohanraj, J., Delamare, R., Vlad, D. A., … Bonifazi, D. (2012). CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrin-DWCNTs Hybrid Materials. Advanced Functional Materials, 22(15), 3209-3222. doi:10.1002/adfm.201102632 es_ES
dc.description.references Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Garcia, H., & Langa, F. (2004). Synthesis and photochemistry of soluble, pentyl ester-modified single wall carbon nanotube. Chemical Physics Letters, 386(4-6), 342-345. doi:10.1016/j.cplett.2004.01.087 es_ES
dc.description.references Langa, F., de la Cruz, P., Espíldora, E., González-Cortés, A., de la Hoz, A., & López-Arza, V. (2000). Synthesis and Properties of Isoxazolo[60]fullerene−Donor Dyads†. The Journal of Organic Chemistry, 65(25), 8675-8684. doi:10.1021/jo0010532 es_ES
dc.description.references Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., & Dresselhaus, M. S. (2011). Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 60(3), 413-550. doi:10.1080/00018732.2011.582251 es_ES
dc.description.references Dillon, E. P., Crouse, C. A., & Barron, A. R. (2008). Synthesis, Characterization, and Carbon Dioxide Adsorption of Covalently Attached Polyethyleneimine-Functionalized Single-Wall Carbon Nanotubes. ACS Nano, 2(1), 156-164. doi:10.1021/nn7002713 es_ES
dc.description.references Giordani, S., Colomer, J.-F., Cattaruzza, F., Alfonsi, J., Meneghetti, M., Prato, M., & Bonifazi, D. (2009). Multifunctional hybrid materials composed of [60]fullerene-based functionalized-single-walled carbon nanotubes. Carbon, 47(3), 578-588. doi:10.1016/j.carbon.2008.10.036 es_ES
dc.description.references Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H., & Gale, L. H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surface and Interface Analysis, 3(5), 211-225. doi:10.1002/sia.740030506 es_ES
dc.description.references Criado, A., Gómez-Escalonilla, M. J., Fierro, J. L. G., Urbina, A., Peña, D., Guitián, E., & Langa, F. (2010). Cycloaddition of benzyne to SWCNT: towards CNT-based paddle wheels. Chemical Communications, 46(37), 7028. doi:10.1039/c0cc01907k es_ES
dc.description.references Gómez-Escalonilla, M. J., Atienzar, P., Garcia Fierro, J. L., García, H., & Langa, F. (2008). Heck reaction on single-walled carbon nanotubes. Synthesis and photochemical properties of a wall functionalized SWNT-anthracene derivative. Journal of Materials Chemistry, 18(13), 1592. doi:10.1039/b717011d es_ES
dc.description.references Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034 es_ES
dc.description.references Brozena, A. H., Moskowitz, J., Shao, B., Deng, S., Liao, H., Gaskell, K. J., & Wang, Y. (2010). Outer Wall Selectively Oxidized, Water-Soluble Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 132(11), 3932-3938. doi:10.1021/ja910626u es_ES
dc.description.references Flavin, K., Lawrence, K., Bartelmess, J., Tasior, M., Navio, C., Bittencourt, C., … Giordani, S. (2011). Synthesis and Characterization of Boron Azadipyrromethene Single-Wall Carbon Nanotube Electron Donor−Acceptor Conjugates. ACS Nano, 5(2), 1198-1206. doi:10.1021/nn102831x es_ES
dc.description.references Bhyrappa, P., Krishnan, V., & Nethaji, M. (1993). Solvation and axial ligation properties of (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrinato)zinc(II). Journal of the Chemical Society, Dalton Transactions, (12), 1901. doi:10.1039/dt9930001901 es_ES
dc.description.references Mizutani, T., Wada, K., & Kitagawa, S. (1999). Porphyrin Receptors for Amines, Amino Acids, and Oligopeptides in Water. Journal of the American Chemical Society, 121(49), 11425-11431. doi:10.1021/ja9922126 es_ES
dc.description.references D’Souza, F., Smith, P. M., Gadde, S., McCarty, A. L., Kullman, M. J., Zandler, M. E., … Ito, O. (2004). Supramolecular Triads Formed by Axial Coordination of Fullerene to Covalently Linked Zinc Porphyrin−Ferrocene(s):  Design, Syntheses, Electrochemistry, and Photochemistry. The Journal of Physical Chemistry B, 108(31), 11333-11343. doi:10.1021/jp0485688 es_ES
dc.description.references Imai, H., Munakata, H., Takahashi, A., Nakagawa, S., & Uemori, Y. (1997). Synthesis and Axial-Ligand Binding of Zinc Complexes of Amphiphilic Porphyrins Containing a Hydrophobic Binding Pocket. Chemistry Letters, 26(8), 819-820. doi:10.1246/cl.1997.819 es_ES
dc.description.references Xu, W., Feng, L., Wu, Y., Wang, T., Wu, J., Xiang, J., … Wang, C. (2011). Construction and photophysics study of supramolecular complexes composed of three-point binding fullerene-trispyridylporphyrin dyads and zinc porphyrin. Phys. Chem. Chem. Phys., 13(2), 428-433. doi:10.1039/c0cp01076f es_ES
dc.description.references Armaroli, N., Diederich, F., Echegoyen, L., Habicher, T., Flamigni, L., Marconi, G., & Nierengarten, J.-F. (1999). A new pyridyl-substituted methanofullerene derivative. Photophysics, electrochemistry and self-assembly with zinc(II) meso-tetraphenylporphyrin (ZnTPP). New Journal of Chemistry, 23(1), 77-83. doi:10.1039/a807400c es_ES
dc.description.references D’Souza, F., & Ito, O. (2005). Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines. Coordination Chemistry Reviews, 249(13-14), 1410-1422. doi:10.1016/j.ccr.2005.01.002 es_ES
dc.description.references Kuramochi, Y., Sandanayaka, A. S. D., Satake, A., Araki, Y., Ogawa, K., Ito, O., & Kobuke, Y. (2009). Energy Transfer Followed by Electron Transfer in a Porphyrin Macrocycle and Central Acceptor Ligand: A Model for a Photosynthetic Composite of the Light-Harvesting Complex and Reaction Center. Chemistry - A European Journal, 15(10), 2317-2327. doi:10.1002/chem.200801796 es_ES
dc.description.references Chi, X., Guerin, A. J., Haycock, R. A., Hunter, C. A., & Sarson, L. D. (1995). Self-assembly of macrocyclic porphyrin oligomers. Journal of the Chemical Society, Chemical Communications, (24), 2567. doi:10.1039/c39950002567 es_ES
dc.description.references Aprile, C., Martín, R., Alvaro, M., Garcia, H., & Scaiano, J. C. (2009). Covalent Functionalization of Short, Single-Wall Carbon Nanotubes: Photophysics of 2,4,6-Triphenylpyrylium Attached to the Nanotube Walls. Chemistry of Materials, 21(5), 884-890. doi:10.1021/cm803037g es_ES
dc.description.references Álvaro, M., Atienzar, P., Bourdelande, J. L., & García, H. (2002). Photochemistry of single wall carbon nanotubes embedded in a mesoporous silica matrix. Chem. Commun., (24), 3004-3005. doi:10.1039/b209225p es_ES
dc.description.references Banerjee, S., & Wong, S. S. (2002). Structural Characterization, Optical Properties, and Improved Solubility of Carbon Nanotubes Functionalized with Wilkinson’s Catalyst. Journal of the American Chemical Society, 124(30), 8940-8948. doi:10.1021/ja026487o es_ES
dc.description.references Guldi, D. M., Holzinger, M., Hirsch, A., Georgakilas, V., & Prato, M. (2003). First comparative emission assay of single-wall carbon nanotubes—solutions and dispersions. Chemical Communications, (10), 1130-1131. doi:10.1039/b301422c es_ES
dc.description.references El-Khouly, M. E., Ito, O., Smith, P. M., & D’Souza, F. (2004). Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 5(1), 79-104. doi:10.1016/j.jphotochemrev.2004.01.003 es_ES
dc.description.references Kuciauskas, D., Lin, S., Seely, G. R., Moore, A. L., Moore, T. A., Gust, D., … Boyd, P. D. W. (1996). Energy and Photoinduced Electron Transfer in Porphyrin−Fullerene Dyads. The Journal of Physical Chemistry, 100(39), 15926-15932. doi:10.1021/jp9612745 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem