Mostrar el registro sencillo del ítem
dc.contributor.author | Venturi, Margherita | es_ES |
dc.contributor.author | Marchioni, Filippo | es_ES |
dc.contributor.author | Ferrer Ribera, Rosa Belén | es_ES |
dc.contributor.author | Balzani, Vincenzo | es_ES |
dc.contributor.author | Opris, Dorina M. | es_ES |
dc.contributor.author | Schlüter, A. Dieter | es_ES |
dc.date.accessioned | 2016-03-15T11:03:30Z | |
dc.date.issued | 2006-01-11 | |
dc.identifier.issn | 1439-4235 | |
dc.identifier.uri | http://hdl.handle.net/10251/61871 | |
dc.description.abstract | The PF6 - salt of the dinuclear [(bpy) 2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2′-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the RuII unit is almost completely quenched with concomitant sensitization of the emission of the OsII unit. Electronic energy transfer from the RuII to the OsII unit takes place by two distinct processes (ken = 2.0 × 10 8 and 2.2 × 107 s-1 at 298 K). Oxidation of the OsII unit of [(bpy)2Ru(1)Os (bpy)2] 4+ by CeIV or nitric acid leads quantitatively to the [(bpy)2RII(1)OsIII(bpy)2] 5+ complex which exhibits a bpy-to-OsIII charge-transfer band at 720 nm (εmax = 250 M-1 cm-1). Light excitation of the RuII unit of [(bpy)2Ru II(1)OsIII(bpy)2]5+ is followed by electron transfer from the RuII to the OsIII unit (k el,f = 1.6 ε 108 and 2.7 × 107 s-1), resulting in the transient formation of the [(bpy) 2RuIII(1)OsII(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru II(1)OsIII(bpy)2]5+ one by back electron transfer (kel,b = 9.1 × 107 and 1.2 × 107 s-1). The biexponential decays of the [(bpy) 2*RuII(1)OsII(bpy)2] 4+, [(bpy)2*RuII(1)OsIII" (bpy)2]5+, and [(bpy)2RuIII(1) OsII(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | ChemPhysChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electrochemistry | es_ES |
dc.subject | Electron transfer | es_ES |
dc.subject | Luminescence | es_ES |
dc.subject | Osmium | es_ES |
dc.subject | Ruthenium | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cphc.200500323 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Venturi, M.; Marchioni, F.; Ferrer Ribera, RB.; Balzani, V.; Opris, DM.; Schlüter, AD. (2006). Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer. ChemPhysChem. 7(1):229-239. doi:10.1002/cphc.200500323 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cphc.200500323 | es_ES |
dc.description.upvformatpinicio | 229 | es_ES |
dc.description.upvformatpfin | 239 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 36002 | es_ES |
dc.description.references | Ritz, T., Damjanović, A., & Schulten, K. (2002). The Quantum Physics of Photosynthesis. ChemPhysChem, 3(3), 243. doi:10.1002/1439-7641(20020315)3:3<243::aid-cphc243>3.0.co;2-y | es_ES |
dc.description.references | Ferreira, K. N. (2004). Architecture of the Photosynthetic Oxygen-Evolving Center. Science, 303(5665), 1831-1838. doi:10.1126/science.1093087 | es_ES |
dc.description.references | Bionanotechnology—Lesson from Nature, Wiley-Liss, Hoboken, New Jersey, 2004. | es_ES |
dc.description.references | Balzani, V., Credi, A., & Venturi, M. (1997). Photoprocesses. Current Opinion in Chemical Biology, 1(4), 506-513. doi:10.1016/s1367-5931(97)80045-2 | es_ES |
dc.description.references | Adronov, A., & Fréchet, J. M. J. (2000). Light-harvesting dendrimers. Chemical Communications, (18), 1701-1710. doi:10.1039/b005993p | es_ES |
dc.description.references | Electron Transfer in Chemistry, Vol. 1-5 (Ed.: ), Wiley-VCH, Weinheim, 2001. | es_ES |
dc.description.references | Giese, B. (2000). Long-Distance Charge Transport in DNA: The Hopping Mechanism. Accounts of Chemical Research, 33(9), 631-636. doi:10.1021/ar990040b | es_ES |
dc.description.references | Giese, B., & Spichty, M. (2000). Long Distance Charge Transport through DNA: Quantification and Extension of the Hopping Model. ChemPhysChem, 1(4), 195-198. doi:10.1002/1439-7641(20001215)1:4<195::aid-cphc195>3.0.co;2-b | es_ES |
dc.description.references | Serroni, S., Campagna, S., Puntoriero, F., Di Pietro, C., McClenaghan, N. D., & Loiseau, F. (2001). Chemical Society Reviews, 30(6), 367-375. doi:10.1039/b008670n | es_ES |
dc.description.references | Gust, D., Moore, T. A., & Moore, A. L. (2001). Mimicking Photosynthetic Solar Energy Transduction. Accounts of Chemical Research, 34(1), 40-48. doi:10.1021/ar9801301 | es_ES |
dc.description.references | Holten, D., Bocian, D. F., & Lindsey, J. S. (2002). Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices. Accounts of Chemical Research, 35(1), 57-69. doi:10.1021/ar970264z | es_ES |
dc.description.references | Giese, B., & Biland, A. (2002). Recent developments of charge injection and charge transfer in DNA. Chemical Communications, (7), 667-672. doi:10.1039/b111044f | es_ES |
dc.description.references | Guldi, D. M. (2001). Fullerene–porphyrin architectures; photosynthetic antenna and reaction center models. Chemical Society Reviews, 31(1), 22-36. doi:10.1039/b106962b | es_ES |
dc.description.references | , Charge and Energy Transfer Dynamics in Molecular Systems, Wiley-VCH, Weinheim, 2000. | es_ES |
dc.description.references | Bignozzi, C. A., Argazzi, R., & Kleverlaan, C. J. (2000). Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes. Chemical Society Reviews, 29(2), 87-96. doi:10.1039/a803991g | es_ES |
dc.description.references | Hecht, S., & Fréchet, J. M. J. (2001). Dendritisch eingeschlossene aktive Zentren: Anwendung des Isolationsprinzips der Natur in der Biomimetik und den Materialwissenschaften. Angewandte Chemie, 113(1), 76-94. doi:10.1002/1521-3757(20010105)113:1<76::aid-ange76>3.0.co;2-f | es_ES |
dc.description.references | Hecht, S., & Fréchet, J. M. J. (2001). Dendritic Encapsulation of Function: Applying Nature’s Site Isolation Principle from Biomimetics to Materials Science. Angewandte Chemie International Edition, 40(1), 74-91. doi:10.1002/1521-3773(20010105)40:1<74::aid-anie74>3.0.co;2-c | es_ES |
dc.description.references | Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. doi:10.1038/35104607 | es_ES |
dc.description.references | Sun, L., Hammarström, L., Åkermark, B., & Styring, S. (2001). Towards artificial photosynthesis: ruthenium–manganese chemistry for energy production. Chemical Society Reviews, 30(1), 36-49. doi:10.1039/a801490f | es_ES |
dc.description.references | , , Molecular Devices and Machines—A Journey into the Nanoworld, Wiley-VCH, Weinheim, 2003; | es_ES |
dc.description.references | Balzani, V. (2003). Photochemical molecular devices. Photochemical & Photobiological Sciences, 2(5), 459. doi:10.1039/b300075n | es_ES |
dc.description.references | Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1-3), 3-14. doi:10.1016/j.jphotochem.2004.02.023 | es_ES |
dc.description.references | De Silva, A. P., & McClenaghan, N. D. (2004). Molecular-Scale Logic Gates. Chemistry - A European Journal, 10(3), 574-586. doi:10.1002/chem.200305054 | es_ES |
dc.description.references | Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., & von Zelewsky, A. (1988). Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews, 84, 85-277. doi:10.1016/0010-8545(88)80032-8 | es_ES |
dc.description.references | Kober, E. M., Caspar, J. V., Sullivan, B. P., & Meyer, T. J. (1988). Synthetic routes to new polypyridyl complexes of osmium(II). Inorganic Chemistry, 27(25), 4587-4598. doi:10.1021/ic00298a017 | es_ES |
dc.description.references | Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, London, 1992. | es_ES |
dc.description.references | Sauvage, J. P., Collin, J. P., Chambron, J. C., Guillerez, S., Coudret, C., Balzani, V., … Flamigni, L. (1994). Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties. Chemical Reviews, 94(4), 993-1019. doi:10.1021/cr00028a006 | es_ES |
dc.description.references | Balzani, V., Juris, A., Venturi, M., Campagna, S., & Serroni, S. (1996). Luminescent and Redox-Active Polynuclear Transition Metal Complexes†. Chemical Reviews, 96(2), 759-834. doi:10.1021/cr941154y | es_ES |
dc.description.references | De Cola, L. (1998). Photoinduced energy and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes. Coordination Chemistry Reviews, 177(1), 301-346. doi:10.1016/s0010-8545(98)00198-2 | es_ES |
dc.description.references | Harriman, A., & Ziessel, R. (1998). Building photoactive molecular-scale wires. Coordination Chemistry Reviews, 171, 331-339. doi:10.1016/s0010-8545(98)90049-2 | es_ES |
dc.description.references | in Electron Transfer in Chemistry, Vol. 5 (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 97-136; | es_ES |
dc.description.references | Brunschwig, B. S., Creutz, C., & Sutin, N. (2002). Optical transitions of symmetrical mixed-valence systems in the Class II–III transition regimeElectronic supplementary information (ESI) is available: derivation of eqn. (39c), table summarizing the relationships between band maxima and band widths predicted by the two-state model and table of spectral properties of mixed-valence ruthenium(II)/(III) bridged by pyrazine and dicyanamide. See http://www.rsc.org/suppdata/cs/b0/b008034i/. Chemical Society Reviews, 31(3), 168-184. doi:10.1039/b008034i | es_ES |
dc.description.references | Henze, O., Lentz, D., & Schlüter, A. D. (2000). Synthesis and an X-ray Structure of Soluble Phenylacetylene Macrocycles with Two Opposing Bipyridine Donor Sites. Chemistry - A European Journal, 6(13), 2362-2367. doi:10.1002/1521-3765(20000703)6:13<2362::aid-chem2362>3.0.co;2-g | es_ES |
dc.description.references | Grave, C., & Schlüter, A. D. (2002). Shape-Persistent, Nano-Sized Macrocycles. European Journal of Organic Chemistry, 2002(18), 3075-3098. doi:10.1002/1099-0690(200209)2002:18<3075::aid-ejoc3075>3.0.co;2-3 | es_ES |
dc.description.references | Zhao, D., & Moore, J. S. (2002). Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chemical Communications, (7), 807-818. doi:10.1039/b207442g | es_ES |
dc.description.references | Baxter, P. N. W. (2003). Synthesis of a Hexagonal Nanosized Macrocyclic Fluorophore with Integrated Endotopic Terpyridine Metal-Chelation Sites. Chemistry - A European Journal, 9(20), 5011-5022. doi:10.1002/chem.200304786 | es_ES |
dc.description.references | Grave, C., Lentz, D., Schäfer, A., Samorì, P., Rabe, J. P., Franke, P., & Schlüter, A. D. (2003). Shape-Persistant Macrocycles with Terpyridine Units: Synthesis, Characterization, and Structure in the Crystal. Journal of the American Chemical Society, 125(23), 6907-6918. doi:10.1021/ja034029p | es_ES |
dc.description.references | Yamaguchi, Y., & Yoshida, Z. (2003). Shape-persistency and Molecular Function in Heteromacrocycles: Creation of Heteroarenecyclynes and Arene–Azaarenecyclynes. Chemistry - A European Journal, 9(22), 5430-5440. doi:10.1002/chem.200305099 | es_ES |
dc.description.references | Höger, S. (2004). Shape-Persistent Macrocycles: From Molecules to Materials. Chemistry - A European Journal, 10(6), 1320-1329. doi:10.1002/chem.200305496 | es_ES |
dc.description.references | Fischer, M., Lieser, G., Rapp, A., Schnell, I., Mamdouh, W., De Feyter, S., … Höger, S. (2004). Shape-Persistent Macrocycles with Intraannular Polar Groups: Synthesis, Liquid Crystallinity, and 2D Organization. Journal of the American Chemical Society, 126(1), 214-222. doi:10.1021/ja038484x | es_ES |
dc.description.references | Scott, L. T., DeCicco, G. J., Hyun, J. L., & Reinhardt, G. (1985). Cyclynes. Part 4. Pericyclynes of the order [5], [6], [7], and [8]. Simple convergent syntheses and chemical reactions of the first homoconjugated cyclic polyacetylenes. Journal of the American Chemical Society, 107(23), 6546-6555. doi:10.1021/ja00309a021 | es_ES |
dc.description.references | Henze, O., Lentz, D., Schäfer, A., Franke, P., & Schlüter, A. D. (2002). Phenylacetylene Macrocycles with Two Opposing Bipyridine Donor Sites: Syntheses, X-ray Structure Determinations, and Ru Complexation. Chemistry - A European Journal, 8(2), 357-365. doi:10.1002/1521-3765(20020118)8:2<357::aid-chem357>3.0.co;2-9 | es_ES |
dc.description.references | Venturi, M., Marchioni, F., Balzani, V., Opris, D. M., Henze, O., & Schlüter, A. D. (2003). A Photophysical and Electrochemical Investigation on a Phenylacetylene Macrocycle Containing Two 2,2′-Bipyridine Units, Its Protonated Forms, and RuII and OsII Complexes. European Journal of Organic Chemistry, 2003(21), 4227-4233. doi:10.1002/ejoc.200300384 | es_ES |
dc.description.references | Buckingham, D., Dwyer, F., Goodwin, H., & Sargeson, A. (1964). Mono- and Bis-(2,2’-bipyridine) and (1,10-phenanthroline) chelates of ruthenium and osmium. IV. Bis chelates of bivalent and tervalent osmium. Australian Journal of Chemistry, 17(3), 325. doi:10.1071/ch9640325 | es_ES |
dc.description.references | Amabilino, D. B., Asakawa, M., Ashton, P. R., Ballardini, R., Balzani, V., Be˘lohradský, M., … Yase, K. (1998). Aggregation of self-assembling branched [n]rotaxanes. New Journal of Chemistry, 22(9), 959-972. doi:10.1039/a802784f | es_ES |
dc.description.references | in Electron Transfer in Chemistry, Vol. 5 (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 3-47. | es_ES |
dc.description.references | Höger, S., Bonrad, K., Mourran, A., Beginn, U., & Möller, M. (2001). Synthesis, Aggregation, and Adsorption Phenomena of Shape-Persistent Macrocycles with Extraannular Polyalkyl Substituents. Journal of the American Chemical Society, 123(24), 5651-5659. doi:10.1021/ja003990x | es_ES |
dc.description.references | Fletcher, N. C., Keene, F. R., Viebrock, H., & von Zelewsky, A. (1997). Molecular Architecture of Polynuclear Ruthenium Bipyridyl Complexes with Controlled Metal Helicity. Inorganic Chemistry, 36(6), 1113-1121. doi:10.1021/ic960948n | es_ES |
dc.description.references | Campagna, S., Serroni, S., Bodige, S., & MacDonnell, F. M. (1999). Absorption Spectra, Photophysical Properties, and Redox Behavior of Stereochemically Pure Dendritic Ruthenium(II) Tetramers and Related Dinuclear and Mononuclear Complexes. Inorganic Chemistry, 38(4), 692-701. doi:10.1021/ic9811852 | es_ES |
dc.description.references | Glover-Fischer, D. P., Metcalf, D. H., Bolender, J. P., & Richardson, F. S. (1995). Chiral discrimination in electronic energy-transfer processes in solution. Effects of temperature and solution properties on chirality-dependent rate parameters. Chemical Physics, 198(1-2), 207-234. doi:10.1016/0301-0104(95)00173-l | es_ES |
dc.description.references | Hamada, T., Brunschwig, B. S., Eifuku, K., Fujita, E., Körner, M., Sakaki, S., … Wishart, J. F. (1999). Enantioselectivities in Electron-Transfer and Excited State Quenching Reactions of a Chiral Ruthenium Complex Possessing a Helical Structure. The Journal of Physical Chemistry A, 103(29), 5645-5654. doi:10.1021/jp991116o | es_ES |
dc.description.references | Főrster, T. (1959). 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc., 27(0), 7-17. doi:10.1039/df9592700007 | es_ES |
dc.description.references | Dexter, D. L. (1953). A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics, 21(5), 836-850. doi:10.1063/1.1699044 | es_ES |
dc.description.references | Miller, J. R., & Beitz, J. V. (1981). Long range transfer of positive charge between dopant molecules in a rigid glassy matrix. The Journal of Chemical Physics, 74(12), 6746-6756. doi:10.1063/1.441078 | es_ES |
dc.description.references | McConnell, H. M. (1961). Intramolecular Charge Transfer in Aromatic Free Radicals. The Journal of Chemical Physics, 35(2), 508-515. doi:10.1063/1.1731961 | es_ES |
dc.description.references | Ryu, C. K., & Schmehl, R. H. (1989). Solvent and temperature dependence of intramolecular energy transfer in the complex [(dmb)2Ru(b-b)Ru(dmb)(CN)2]2+. The Journal of Physical Chemistry, 93(23), 7961-7966. doi:10.1021/j100360a043 | es_ES |
dc.description.references | Furue, M., Yoshidzumi, T., Kinoshita, S., Kushida, T., Nozakura, S., & Kamachi, M. (1991). Intramolecular Energy Transfer in Covalently Linked Polypyridine Ruthenium(II)/Osmium(II) Binuclear Complexes. Ru(II)(bpy)2Mebpy– (CH2)n–MebpyOs(II)(bpy)2(n=2, 3, 5, and 7). Bulletin of the Chemical Society of Japan, 64(5), 1632-1640. doi:10.1246/bcsj.64.1632 | es_ES |
dc.description.references | Schmehl, R. H., Auerbach, R. A., Wacholtz, W. F., Elliott, C. M., Freitag, R. A., & Merkert, J. W. (1986). Formation and photophysical properties of iron-ruthenium tetranuclear bipyridyl complexes of the type {[(bpy)2Ru(L-L)]3Fe}. Inorganic Chemistry, 25(14), 2440-2445. doi:10.1021/ic00234a032 | es_ES |
dc.description.references | Schmehl, R. H., Auerbach, R. A., & Wacholtz, W. F. (1988). Intramolecular energy transfer in the covalently linked dimeric complex [(bpy)2Ru(b-b)Ru(biq)2]4+. The Journal of Physical Chemistry, 92(22), 6202-6206. doi:10.1021/j100333a008 | es_ES |
dc.description.references | De Cola, L., Balzani, V., Barigelletti, F., Flamigni, L., Belser, P., von Zelewsky, A., … Voegtle, F. (1993). Photoinduced energy and electron transfer processes in supramolecular species, tris(bipyridine) complexes of ruthenium(II)/osmium(II), Ru(II)/Ru(III), Os(II)/Os(III), and Ru(II)/Os(III) separated by a rigid spacer. Inorganic Chemistry, 32(23), 5228-5238. doi:10.1021/ic00075a048 | es_ES |
dc.description.references | Balzani, V., Bolletta, F., & Scandola, F. (1980). Vertical and «nonvertical» energy transfer processes. A general classical treatment. Journal of the American Chemical Society, 102(7), 2152-2163. doi:10.1021/ja00527a002 | es_ES |
dc.description.references | Scandola, F., & Balzani, V. (1983). Energy-transfer processes of excited states of coordination compounds. Journal of Chemical Education, 60(10), 814. doi:10.1021/ed060p814 | es_ES |
dc.description.references | Marcus, R. A. (1964). Chemical and Electrochemical Electron-Transfer Theory. Annual Review of Physical Chemistry, 15(1), 155-196. doi:10.1146/annurev.pc.15.100164.001103 | es_ES |
dc.description.references | Sutin, N. (1982). Nuclear, electronic, and frequency factors in electron transfer reactions. Accounts of Chemical Research, 15(9), 275-282. doi:10.1021/ar00081a002 | es_ES |
dc.description.references | Collin, J. P., Guillerez, S., Sauvage, J. P., Barigelletti, F., De Cola, L., Flamigni, L., & Balzani, V. (1992). Photoinduced process in dyads and triads: an osmium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups. Inorganic Chemistry, 31(20), 4112-4117. doi:10.1021/ic00046a023 | es_ES |
dc.description.references | Marcus, R. A., & Sutin, N. (1985). Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 811(3), 265-322. doi:10.1016/0304-4173(85)90014-x | es_ES |
dc.description.references | Above 600 nm, the absorption band of RuII1OsII is entirely due to the Os-based chromophoric group (Figure 3). | es_ES |
dc.description.references | Keyes, T. E., Evrard, B., Vos, J. G., Brady, C., McGarvey, J. J., & Jayaweera, P. (2004). Electronic and photophysical properties of a novel phenol bound dinuclear ruthenium complex: evidence for a luminescent mixed valence stateElectronic supplementary information (ESI) available: Resonance Raman and ES MS spectra. See http://www.rsc.org/suppdata/dt/b4/b405114a/. Dalton Transactions, (15), 2341. doi:10.1039/b405114a | es_ES |
dc.description.references | Balzani, V., Barigelletti, F., Belser, P., Bernhard, S., De Cola, L., & Flamigni, L. (1996). Rigid Rodlike Dinuclear Ru/Os Complexes of a Novel Bridging Ligand. Intercomponent Energy and Electron-Transfer Processes. The Journal of Physical Chemistry, 100(42), 16786-16788. doi:10.1021/jp962366x | es_ES |
dc.description.references | Frank, M., Nieger, M., Vögtle, F., Belser, P., von Zelewsky, A., De Cola, L., … Flamigni, L. (1996). Dinuclear RuII and/or OsII complexes of bis-bipyridine bridging ligands containing adamantane spacers: synthesis, luminescence properties, intercomponent energy and electron transfer processes. Inorganica Chimica Acta, 242(1-2), 281-291. doi:10.1016/0020-1693(95)04878-2 | es_ES |
dc.description.references | De Cola, L., Balzani, V., Barigelletti, F., Flamigni, L., Belser, P., & Bernhard, S. (2010). Photoinduced energy- and electron-transfer processes in dinuclear ruthenium(II) and/or osmium(II) complexes connected by a linear rigid bis-chelating bridge. Recueil des Travaux Chimiques des Pays-Bas, 114(11-12), 534-541. doi:10.1002/recl.19951141119 | es_ES |
dc.description.references | Chiorboli, C., Rodgers, M. A. J., & Scandola, F. (2003). Ultrafast Processes in Bimetallic Dyads with Extended Aromatic Bridges. Energy and Electron Transfer Pathways in Tetrapyridophenazine-Bridged Complexes. Journal of the American Chemical Society, 125(2), 483-491. doi:10.1021/ja0284916 | es_ES |
dc.description.references | Bryant, G., & Fergusson, J. (1971). Charge-transfer and intraligand electronic spectra of bipyridyl complexes of iron, ruthenium, and osmium. II. Tervalent complexes. Australian Journal of Chemistry, 24(2), 275. doi:10.1071/ch9710275 | es_ES |
dc.description.references | For a somewhat similar behavior in a dinuclear Ru complex, see ref. [36]. | es_ES |
dc.description.references | in Photoinduced Electron Transfer (Eds.: ), Elsevier, New York, 1988, Part A, pp. 161-206. | es_ES |
dc.description.references | Kroon, J., Oliver, A. M., Paddon-Row, M. N., & Verhoeven, J. W. (1990). Observation of a remarkable dependence of the rate of singlet-singlet energy transfer on the configuration of the hydrocarbon bridge in bichromophoric systems. Journal of the American Chemical Society, 112(12), 4868-4873. doi:10.1021/ja00168a036 | es_ES |
dc.description.references | Lokan, N., Paddon-Row, M. N., Smith, T. A., La Rosa, M., Ghiggino, K. P., & Speiser, S. (1999). Highly Efficient Through-Bond-Mediated Electronic Excitation Energy Transfer Taking Place over 12 Å. Journal of the American Chemical Society, 121(12), 2917-2918. doi:10.1021/ja984036r | es_ES |
dc.description.references | in Electron Transfer in Chemistry, Vol. 3 (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 179-271. | es_ES |
dc.description.references | Harriman, A., Hissler, M., Ziessel, R., De Cian, A., & Fisher, J. (1995). Rigid multinuclear arrays assembled around platinum centres. Journal of the Chemical Society, Dalton Transactions, (24), 4067. doi:10.1039/dt9950004067 | es_ES |