- -

Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Venturi, Margherita es_ES
dc.contributor.author Marchioni, Filippo es_ES
dc.contributor.author Ferrer Ribera, Rosa Belén es_ES
dc.contributor.author Balzani, Vincenzo es_ES
dc.contributor.author Opris, Dorina M. es_ES
dc.contributor.author Schlüter, A. Dieter es_ES
dc.date.accessioned 2016-03-15T11:03:30Z
dc.date.issued 2006-01-11
dc.identifier.issn 1439-4235
dc.identifier.uri http://hdl.handle.net/10251/61871
dc.description.abstract The PF6 - salt of the dinuclear [(bpy) 2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2′-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the RuII unit is almost completely quenched with concomitant sensitization of the emission of the OsII unit. Electronic energy transfer from the RuII to the OsII unit takes place by two distinct processes (ken = 2.0 × 10 8 and 2.2 × 107 s-1 at 298 K). Oxidation of the OsII unit of [(bpy)2Ru(1)Os (bpy)2] 4+ by CeIV or nitric acid leads quantitatively to the [(bpy)2RII(1)OsIII(bpy)2] 5+ complex which exhibits a bpy-to-OsIII charge-transfer band at 720 nm (εmax = 250 M-1 cm-1). Light excitation of the RuII unit of [(bpy)2Ru II(1)OsIII(bpy)2]5+ is followed by electron transfer from the RuII to the OsIII unit (k el,f = 1.6 ε 108 and 2.7 × 107 s-1), resulting in the transient formation of the [(bpy) 2RuIII(1)OsII(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru II(1)OsIII(bpy)2]5+ one by back electron transfer (kel,b = 9.1 × 107 and 1.2 × 107 s-1). The biexponential decays of the [(bpy) 2*RuII(1)OsII(bpy)2] 4+, [(bpy)2*RuII(1)OsIII" (bpy)2]5+, and [(bpy)2RuIII(1) OsII(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA. es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemPhysChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrochemistry es_ES
dc.subject Electron transfer es_ES
dc.subject Luminescence es_ES
dc.subject Osmium es_ES
dc.subject Ruthenium es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cphc.200500323
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Venturi, M.; Marchioni, F.; Ferrer Ribera, RB.; Balzani, V.; Opris, DM.; Schlüter, AD. (2006). Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer. ChemPhysChem. 7(1):229-239. doi:10.1002/cphc.200500323 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cphc.200500323 es_ES
dc.description.upvformatpinicio 229 es_ES
dc.description.upvformatpfin 239 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 36002 es_ES
dc.description.references Ritz, T., Damjanović, A., & Schulten, K. (2002). The Quantum Physics of Photosynthesis. ChemPhysChem, 3(3), 243. doi:10.1002/1439-7641(20020315)3:3<243::aid-cphc243>3.0.co;2-y es_ES
dc.description.references Ferreira, K. N. (2004). Architecture of the Photosynthetic Oxygen-Evolving Center. Science, 303(5665), 1831-1838. doi:10.1126/science.1093087 es_ES
dc.description.references Bionanotechnology—Lesson from Nature, Wiley-Liss, Hoboken, New Jersey, 2004. es_ES
dc.description.references Balzani, V., Credi, A., & Venturi, M. (1997). Photoprocesses. Current Opinion in Chemical Biology, 1(4), 506-513. doi:10.1016/s1367-5931(97)80045-2 es_ES
dc.description.references Adronov, A., & Fréchet, J. M. J. (2000). Light-harvesting dendrimers. Chemical Communications, (18), 1701-1710. doi:10.1039/b005993p es_ES
dc.description.references Electron Transfer in Chemistry, Vol. 1-5 (Ed.: ), Wiley-VCH, Weinheim, 2001. es_ES
dc.description.references Giese, B. (2000). Long-Distance Charge Transport in DNA:  The Hopping Mechanism. Accounts of Chemical Research, 33(9), 631-636. doi:10.1021/ar990040b es_ES
dc.description.references Giese, B., & Spichty, M. (2000). Long Distance Charge Transport through DNA: Quantification and Extension of the Hopping Model. ChemPhysChem, 1(4), 195-198. doi:10.1002/1439-7641(20001215)1:4<195::aid-cphc195>3.0.co;2-b es_ES
dc.description.references Serroni, S., Campagna, S., Puntoriero, F., Di Pietro, C., McClenaghan, N. D., & Loiseau, F. (2001). Chemical Society Reviews, 30(6), 367-375. doi:10.1039/b008670n es_ES
dc.description.references Gust, D., Moore, T. A., & Moore, A. L. (2001). Mimicking Photosynthetic Solar Energy Transduction. Accounts of Chemical Research, 34(1), 40-48. doi:10.1021/ar9801301 es_ES
dc.description.references Holten, D., Bocian, D. F., & Lindsey, J. S. (2002). Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices. Accounts of Chemical Research, 35(1), 57-69. doi:10.1021/ar970264z es_ES
dc.description.references Giese, B., & Biland, A. (2002). Recent developments of charge injection and charge transfer in DNA. Chemical Communications, (7), 667-672. doi:10.1039/b111044f es_ES
dc.description.references Guldi, D. M. (2001). Fullerene–porphyrin architectures; photosynthetic antenna and reaction center models. Chemical Society Reviews, 31(1), 22-36. doi:10.1039/b106962b es_ES
dc.description.references , Charge and Energy Transfer Dynamics in Molecular Systems, Wiley-VCH, Weinheim, 2000. es_ES
dc.description.references Bignozzi, C. A., Argazzi, R., & Kleverlaan, C. J. (2000). Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes. Chemical Society Reviews, 29(2), 87-96. doi:10.1039/a803991g es_ES
dc.description.references Hecht, S., & Fréchet, J. M. J. (2001). Dendritisch eingeschlossene aktive Zentren: Anwendung des Isolationsprinzips der Natur in der Biomimetik und den Materialwissenschaften. Angewandte Chemie, 113(1), 76-94. doi:10.1002/1521-3757(20010105)113:1<76::aid-ange76>3.0.co;2-f es_ES
dc.description.references Hecht, S., & Fréchet, J. M. J. (2001). Dendritic Encapsulation of Function: Applying Nature’s Site Isolation Principle from Biomimetics to Materials Science. Angewandte Chemie International Edition, 40(1), 74-91. doi:10.1002/1521-3773(20010105)40:1<74::aid-anie74>3.0.co;2-c es_ES
dc.description.references Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. doi:10.1038/35104607 es_ES
dc.description.references Sun, L., Hammarström, L., Åkermark, B., & Styring, S. (2001). Towards artificial photosynthesis: ruthenium–manganese chemistry for energy production. Chemical Society Reviews, 30(1), 36-49. doi:10.1039/a801490f es_ES
dc.description.references , , Molecular Devices and Machines—A Journey into the Nanoworld, Wiley-VCH, Weinheim, 2003; es_ES
dc.description.references Balzani, V. (2003). Photochemical molecular devices. Photochemical & Photobiological Sciences, 2(5), 459. doi:10.1039/b300075n es_ES
dc.description.references Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1-3), 3-14. doi:10.1016/j.jphotochem.2004.02.023 es_ES
dc.description.references De Silva, A. P., & McClenaghan, N. D. (2004). Molecular-Scale Logic Gates. Chemistry - A European Journal, 10(3), 574-586. doi:10.1002/chem.200305054 es_ES
dc.description.references Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., & von Zelewsky, A. (1988). Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews, 84, 85-277. doi:10.1016/0010-8545(88)80032-8 es_ES
dc.description.references Kober, E. M., Caspar, J. V., Sullivan, B. P., & Meyer, T. J. (1988). Synthetic routes to new polypyridyl complexes of osmium(II). Inorganic Chemistry, 27(25), 4587-4598. doi:10.1021/ic00298a017 es_ES
dc.description.references Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, London, 1992. es_ES
dc.description.references Sauvage, J. P., Collin, J. P., Chambron, J. C., Guillerez, S., Coudret, C., Balzani, V., … Flamigni, L. (1994). Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties. Chemical Reviews, 94(4), 993-1019. doi:10.1021/cr00028a006 es_ES
dc.description.references Balzani, V., Juris, A., Venturi, M., Campagna, S., & Serroni, S. (1996). Luminescent and Redox-Active Polynuclear Transition Metal Complexes†. Chemical Reviews, 96(2), 759-834. doi:10.1021/cr941154y es_ES
dc.description.references De Cola, L. (1998). Photoinduced energy and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes. Coordination Chemistry Reviews, 177(1), 301-346. doi:10.1016/s0010-8545(98)00198-2 es_ES
dc.description.references Harriman, A., & Ziessel, R. (1998). Building photoactive molecular-scale wires. Coordination Chemistry Reviews, 171, 331-339. doi:10.1016/s0010-8545(98)90049-2 es_ES
dc.description.references in Electron Transfer in Chemistry, Vol. 5 (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 97-136; es_ES
dc.description.references Brunschwig, B. S., Creutz, C., & Sutin, N. (2002). Optical transitions of symmetrical mixed-valence systems in the Class II–III transition regimeElectronic supplementary information (ESI) is available: derivation of eqn. (39c), table summarizing the relationships between band maxima and band widths predicted by the two-state model and table of spectral properties of mixed-valence ruthenium(II)/(III) bridged by pyrazine and dicyanamide. See http://www.rsc.org/suppdata/cs/b0/b008034i/. Chemical Society Reviews, 31(3), 168-184. doi:10.1039/b008034i es_ES
dc.description.references Henze, O., Lentz, D., & Schlüter, A. D. (2000). Synthesis and an X-ray Structure of Soluble Phenylacetylene Macrocycles with Two Opposing Bipyridine Donor Sites. Chemistry - A European Journal, 6(13), 2362-2367. doi:10.1002/1521-3765(20000703)6:13<2362::aid-chem2362>3.0.co;2-g es_ES
dc.description.references Grave, C., & Schlüter, A. D. (2002). Shape-Persistent, Nano-Sized Macrocycles. European Journal of Organic Chemistry, 2002(18), 3075-3098. doi:10.1002/1099-0690(200209)2002:18<3075::aid-ejoc3075>3.0.co;2-3 es_ES
dc.description.references Zhao, D., & Moore, J. S. (2002). Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chemical Communications, (7), 807-818. doi:10.1039/b207442g es_ES
dc.description.references Baxter, P. N. W. (2003). Synthesis of a Hexagonal Nanosized Macrocyclic Fluorophore with Integrated Endotopic Terpyridine Metal-Chelation Sites. Chemistry - A European Journal, 9(20), 5011-5022. doi:10.1002/chem.200304786 es_ES
dc.description.references Grave, C., Lentz, D., Schäfer, A., Samorì, P., Rabe, J. P., Franke, P., & Schlüter, A. D. (2003). Shape-Persistant Macrocycles with Terpyridine Units:  Synthesis, Characterization, and Structure in the Crystal. Journal of the American Chemical Society, 125(23), 6907-6918. doi:10.1021/ja034029p es_ES
dc.description.references Yamaguchi, Y., & Yoshida, Z. (2003). Shape-persistency and Molecular Function in Heteromacrocycles: Creation of Heteroarenecyclynes and Arene–Azaarenecyclynes. Chemistry - A European Journal, 9(22), 5430-5440. doi:10.1002/chem.200305099 es_ES
dc.description.references Höger, S. (2004). Shape-Persistent Macrocycles: From Molecules to Materials. Chemistry - A European Journal, 10(6), 1320-1329. doi:10.1002/chem.200305496 es_ES
dc.description.references Fischer, M., Lieser, G., Rapp, A., Schnell, I., Mamdouh, W., De Feyter, S., … Höger, S. (2004). Shape-Persistent Macrocycles with Intraannular Polar Groups:  Synthesis, Liquid Crystallinity, and 2D Organization. Journal of the American Chemical Society, 126(1), 214-222. doi:10.1021/ja038484x es_ES
dc.description.references Scott, L. T., DeCicco, G. J., Hyun, J. L., & Reinhardt, G. (1985). Cyclynes. Part 4. Pericyclynes of the order [5], [6], [7], and [8]. Simple convergent syntheses and chemical reactions of the first homoconjugated cyclic polyacetylenes. Journal of the American Chemical Society, 107(23), 6546-6555. doi:10.1021/ja00309a021 es_ES
dc.description.references Henze, O., Lentz, D., Schäfer, A., Franke, P., & Schlüter, A. D. (2002). Phenylacetylene Macrocycles with Two Opposing Bipyridine Donor Sites: Syntheses, X-ray Structure Determinations, and Ru Complexation. Chemistry - A European Journal, 8(2), 357-365. doi:10.1002/1521-3765(20020118)8:2<357::aid-chem357>3.0.co;2-9 es_ES
dc.description.references Venturi, M., Marchioni, F., Balzani, V., Opris, D. M., Henze, O., & Schlüter, A. D. (2003). A Photophysical and Electrochemical Investigation on a Phenylacetylene Macrocycle Containing Two 2,2′-Bipyridine Units, Its Protonated Forms, and RuII and OsII Complexes. European Journal of Organic Chemistry, 2003(21), 4227-4233. doi:10.1002/ejoc.200300384 es_ES
dc.description.references Buckingham, D., Dwyer, F., Goodwin, H., & Sargeson, A. (1964). Mono- and Bis-(2,2’-bipyridine) and (1,10-phenanthroline) chelates of ruthenium and osmium. IV. Bis chelates of bivalent and tervalent osmium. Australian Journal of Chemistry, 17(3), 325. doi:10.1071/ch9640325 es_ES
dc.description.references Amabilino, D. B., Asakawa, M., Ashton, P. R., Ballardini, R., Balzani, V., Be˘lohradský, M., … Yase, K. (1998). Aggregation of self-assembling branched [n]rotaxanes. New Journal of Chemistry, 22(9), 959-972. doi:10.1039/a802784f es_ES
dc.description.references in Electron Transfer in Chemistry, Vol. 5 (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 3-47. es_ES
dc.description.references Höger, S., Bonrad, K., Mourran, A., Beginn, U., & Möller, M. (2001). Synthesis, Aggregation, and Adsorption Phenomena of Shape-Persistent Macrocycles with Extraannular Polyalkyl Substituents. Journal of the American Chemical Society, 123(24), 5651-5659. doi:10.1021/ja003990x es_ES
dc.description.references Fletcher, N. C., Keene, F. R., Viebrock, H., & von Zelewsky, A. (1997). Molecular Architecture of Polynuclear Ruthenium Bipyridyl Complexes with Controlled Metal Helicity. Inorganic Chemistry, 36(6), 1113-1121. doi:10.1021/ic960948n es_ES
dc.description.references Campagna, S., Serroni, S., Bodige, S., & MacDonnell, F. M. (1999). Absorption Spectra, Photophysical Properties, and Redox Behavior of Stereochemically Pure Dendritic Ruthenium(II) Tetramers and Related Dinuclear and Mononuclear Complexes. Inorganic Chemistry, 38(4), 692-701. doi:10.1021/ic9811852 es_ES
dc.description.references Glover-Fischer, D. P., Metcalf, D. H., Bolender, J. P., & Richardson, F. S. (1995). Chiral discrimination in electronic energy-transfer processes in solution. Effects of temperature and solution properties on chirality-dependent rate parameters. Chemical Physics, 198(1-2), 207-234. doi:10.1016/0301-0104(95)00173-l es_ES
dc.description.references Hamada, T., Brunschwig, B. S., Eifuku, K., Fujita, E., Körner, M., Sakaki, S., … Wishart, J. F. (1999). Enantioselectivities in Electron-Transfer and Excited State Quenching Reactions of a Chiral Ruthenium Complex Possessing a Helical Structure. The Journal of Physical Chemistry A, 103(29), 5645-5654. doi:10.1021/jp991116o es_ES
dc.description.references Főrster, T. (1959). 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc., 27(0), 7-17. doi:10.1039/df9592700007 es_ES
dc.description.references Dexter, D. L. (1953). A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics, 21(5), 836-850. doi:10.1063/1.1699044 es_ES
dc.description.references Miller, J. R., & Beitz, J. V. (1981). Long range transfer of positive charge between dopant molecules in a rigid glassy matrix. The Journal of Chemical Physics, 74(12), 6746-6756. doi:10.1063/1.441078 es_ES
dc.description.references McConnell, H. M. (1961). Intramolecular Charge Transfer in Aromatic Free Radicals. The Journal of Chemical Physics, 35(2), 508-515. doi:10.1063/1.1731961 es_ES
dc.description.references Ryu, C. K., & Schmehl, R. H. (1989). Solvent and temperature dependence of intramolecular energy transfer in the complex [(dmb)2Ru(b-b)Ru(dmb)(CN)2]2+. The Journal of Physical Chemistry, 93(23), 7961-7966. doi:10.1021/j100360a043 es_ES
dc.description.references Furue, M., Yoshidzumi, T., Kinoshita, S., Kushida, T., Nozakura, S., & Kamachi, M. (1991). Intramolecular Energy Transfer in Covalently Linked Polypyridine Ruthenium(II)/Osmium(II) Binuclear Complexes. Ru(II)(bpy)2Mebpy– (CH2)n–MebpyOs(II)(bpy)2(n=2, 3, 5, and 7). Bulletin of the Chemical Society of Japan, 64(5), 1632-1640. doi:10.1246/bcsj.64.1632 es_ES
dc.description.references Schmehl, R. H., Auerbach, R. A., Wacholtz, W. F., Elliott, C. M., Freitag, R. A., & Merkert, J. W. (1986). Formation and photophysical properties of iron-ruthenium tetranuclear bipyridyl complexes of the type {[(bpy)2Ru(L-L)]3Fe}. Inorganic Chemistry, 25(14), 2440-2445. doi:10.1021/ic00234a032 es_ES
dc.description.references Schmehl, R. H., Auerbach, R. A., & Wacholtz, W. F. (1988). Intramolecular energy transfer in the covalently linked dimeric complex [(bpy)2Ru(b-b)Ru(biq)2]4+. The Journal of Physical Chemistry, 92(22), 6202-6206. doi:10.1021/j100333a008 es_ES
dc.description.references De Cola, L., Balzani, V., Barigelletti, F., Flamigni, L., Belser, P., von Zelewsky, A., … Voegtle, F. (1993). Photoinduced energy and electron transfer processes in supramolecular species, tris(bipyridine) complexes of ruthenium(II)/osmium(II), Ru(II)/Ru(III), Os(II)/Os(III), and Ru(II)/Os(III) separated by a rigid spacer. Inorganic Chemistry, 32(23), 5228-5238. doi:10.1021/ic00075a048 es_ES
dc.description.references Balzani, V., Bolletta, F., & Scandola, F. (1980). Vertical and «nonvertical» energy transfer processes. A general classical treatment. Journal of the American Chemical Society, 102(7), 2152-2163. doi:10.1021/ja00527a002 es_ES
dc.description.references Scandola, F., & Balzani, V. (1983). Energy-transfer processes of excited states of coordination compounds. Journal of Chemical Education, 60(10), 814. doi:10.1021/ed060p814 es_ES
dc.description.references Marcus, R. A. (1964). Chemical and Electrochemical Electron-Transfer Theory. Annual Review of Physical Chemistry, 15(1), 155-196. doi:10.1146/annurev.pc.15.100164.001103 es_ES
dc.description.references Sutin, N. (1982). Nuclear, electronic, and frequency factors in electron transfer reactions. Accounts of Chemical Research, 15(9), 275-282. doi:10.1021/ar00081a002 es_ES
dc.description.references Collin, J. P., Guillerez, S., Sauvage, J. P., Barigelletti, F., De Cola, L., Flamigni, L., & Balzani, V. (1992). Photoinduced process in dyads and triads: an osmium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups. Inorganic Chemistry, 31(20), 4112-4117. doi:10.1021/ic00046a023 es_ES
dc.description.references Marcus, R. A., & Sutin, N. (1985). Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 811(3), 265-322. doi:10.1016/0304-4173(85)90014-x es_ES
dc.description.references Above 600 nm, the absorption band of RuII1OsII is entirely due to the Os-based chromophoric group (Figure 3). es_ES
dc.description.references Keyes, T. E., Evrard, B., Vos, J. G., Brady, C., McGarvey, J. J., & Jayaweera, P. (2004). Electronic and photophysical properties of a novel phenol bound dinuclear ruthenium complex: evidence for a luminescent mixed valence stateElectronic supplementary information (ESI) available: Resonance Raman and ES MS spectra. See http://www.rsc.org/suppdata/dt/b4/b405114a/. Dalton Transactions, (15), 2341. doi:10.1039/b405114a es_ES
dc.description.references Balzani, V., Barigelletti, F., Belser, P., Bernhard, S., De Cola, L., & Flamigni, L. (1996). Rigid Rodlike Dinuclear Ru/Os Complexes of a Novel Bridging Ligand. Intercomponent Energy and Electron-Transfer Processes. The Journal of Physical Chemistry, 100(42), 16786-16788. doi:10.1021/jp962366x es_ES
dc.description.references Frank, M., Nieger, M., Vögtle, F., Belser, P., von Zelewsky, A., De Cola, L., … Flamigni, L. (1996). Dinuclear RuII and/or OsII complexes of bis-bipyridine bridging ligands containing adamantane spacers: synthesis, luminescence properties, intercomponent energy and electron transfer processes. Inorganica Chimica Acta, 242(1-2), 281-291. doi:10.1016/0020-1693(95)04878-2 es_ES
dc.description.references De Cola, L., Balzani, V., Barigelletti, F., Flamigni, L., Belser, P., & Bernhard, S. (2010). Photoinduced energy- and electron-transfer processes in dinuclear ruthenium(II) and/or osmium(II) complexes connected by a linear rigid bis-chelating bridge. Recueil des Travaux Chimiques des Pays-Bas, 114(11-12), 534-541. doi:10.1002/recl.19951141119 es_ES
dc.description.references Chiorboli, C., Rodgers, M. A. J., & Scandola, F. (2003). Ultrafast Processes in Bimetallic Dyads with Extended Aromatic Bridges. Energy and Electron Transfer Pathways in Tetrapyridophenazine-Bridged Complexes. Journal of the American Chemical Society, 125(2), 483-491. doi:10.1021/ja0284916 es_ES
dc.description.references Bryant, G., & Fergusson, J. (1971). Charge-transfer and intraligand electronic spectra of bipyridyl complexes of iron, ruthenium, and osmium. II. Tervalent complexes. Australian Journal of Chemistry, 24(2), 275. doi:10.1071/ch9710275 es_ES
dc.description.references For a somewhat similar behavior in a dinuclear Ru complex, see ref. [36]. es_ES
dc.description.references in Photoinduced Electron Transfer (Eds.: ), Elsevier, New York, 1988, Part A, pp. 161-206. es_ES
dc.description.references Kroon, J., Oliver, A. M., Paddon-Row, M. N., & Verhoeven, J. W. (1990). Observation of a remarkable dependence of the rate of singlet-singlet energy transfer on the configuration of the hydrocarbon bridge in bichromophoric systems. Journal of the American Chemical Society, 112(12), 4868-4873. doi:10.1021/ja00168a036 es_ES
dc.description.references Lokan, N., Paddon-Row, M. N., Smith, T. A., La Rosa, M., Ghiggino, K. P., & Speiser, S. (1999). Highly Efficient Through-Bond-Mediated Electronic Excitation Energy Transfer Taking Place over 12 Å. Journal of the American Chemical Society, 121(12), 2917-2918. doi:10.1021/ja984036r es_ES
dc.description.references in Electron Transfer in Chemistry, Vol. 3 (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 179-271. es_ES
dc.description.references Harriman, A., Hissler, M., Ziessel, R., De Cian, A., & Fisher, J. (1995). Rigid multinuclear arrays assembled around platinum centres. Journal of the Chemical Society, Dalton Transactions, (24), 4067. doi:10.1039/dt9950004067 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem