- -

Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer

Mostrar el registro completo del ítem

Venturi, M.; Marchioni, F.; Ferrer Ribera, RB.; Balzani, V.; Opris, DM.; Schlüter, AD. (2006). Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer. ChemPhysChem. 7(1):229-239. doi:10.1002/cphc.200500323

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61871

Ficheros en el ítem

Metadatos del ítem

Título: Photoinduced energy- and electron-transfer processes in dinuclear Ru II-OsII, RuII-OsIII, and Ru III-OsII trisbipyridine complexes containing a shape-persistent macrocyclic spacer
Autor: Venturi, Margherita Marchioni, Filippo Ferrer Ribera, Rosa Belén Balzani, Vincenzo Opris, Dorina M. Schlüter, A. Dieter
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
The PF6 - salt of the dinuclear [(bpy) 2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2′-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, ...[+]
Palabras clave: Electrochemistry , Electron transfer , Luminescence , Osmium , Ruthenium
Derechos de uso: Cerrado
Fuente:
ChemPhysChem. (issn: 1439-4235 )
DOI: 10.1002/cphc.200500323
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cphc.200500323
Tipo: Artículo

References

Ritz, T., Damjanović, A., & Schulten, K. (2002). The Quantum Physics of Photosynthesis. ChemPhysChem, 3(3), 243. doi:10.1002/1439-7641(20020315)3:3<243::aid-cphc243>3.0.co;2-y

Ferreira, K. N. (2004). Architecture of the Photosynthetic Oxygen-Evolving Center. Science, 303(5665), 1831-1838. doi:10.1126/science.1093087

Bionanotechnology—Lesson from Nature, Wiley-Liss, Hoboken, New Jersey, 2004. [+]
Ritz, T., Damjanović, A., & Schulten, K. (2002). The Quantum Physics of Photosynthesis. ChemPhysChem, 3(3), 243. doi:10.1002/1439-7641(20020315)3:3<243::aid-cphc243>3.0.co;2-y

Ferreira, K. N. (2004). Architecture of the Photosynthetic Oxygen-Evolving Center. Science, 303(5665), 1831-1838. doi:10.1126/science.1093087

Bionanotechnology—Lesson from Nature, Wiley-Liss, Hoboken, New Jersey, 2004.

Balzani, V., Credi, A., & Venturi, M. (1997). Photoprocesses. Current Opinion in Chemical Biology, 1(4), 506-513. doi:10.1016/s1367-5931(97)80045-2

Adronov, A., & Fréchet, J. M. J. (2000). Light-harvesting dendrimers. Chemical Communications, (18), 1701-1710. doi:10.1039/b005993p

Electron Transfer in Chemistry, Vol. 1-5 (Ed.: ), Wiley-VCH, Weinheim, 2001.

Giese, B. (2000). Long-Distance Charge Transport in DNA:  The Hopping Mechanism. Accounts of Chemical Research, 33(9), 631-636. doi:10.1021/ar990040b

Giese, B., & Spichty, M. (2000). Long Distance Charge Transport through DNA: Quantification and Extension of the Hopping Model. ChemPhysChem, 1(4), 195-198. doi:10.1002/1439-7641(20001215)1:4<195::aid-cphc195>3.0.co;2-b

Serroni, S., Campagna, S., Puntoriero, F., Di Pietro, C., McClenaghan, N. D., & Loiseau, F. (2001). Chemical Society Reviews, 30(6), 367-375. doi:10.1039/b008670n

Gust, D., Moore, T. A., & Moore, A. L. (2001). Mimicking Photosynthetic Solar Energy Transduction. Accounts of Chemical Research, 34(1), 40-48. doi:10.1021/ar9801301

Holten, D., Bocian, D. F., & Lindsey, J. S. (2002). Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices. Accounts of Chemical Research, 35(1), 57-69. doi:10.1021/ar970264z

Giese, B., & Biland, A. (2002). Recent developments of charge injection and charge transfer in DNA. Chemical Communications, (7), 667-672. doi:10.1039/b111044f

Guldi, D. M. (2001). Fullerene–porphyrin architectures; photosynthetic antenna and reaction center models. Chemical Society Reviews, 31(1), 22-36. doi:10.1039/b106962b

, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley-VCH, Weinheim, 2000.

Bignozzi, C. A., Argazzi, R., & Kleverlaan, C. J. (2000). Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes. Chemical Society Reviews, 29(2), 87-96. doi:10.1039/a803991g

Hecht, S., & Fréchet, J. M. J. (2001). Dendritisch eingeschlossene aktive Zentren: Anwendung des Isolationsprinzips der Natur in der Biomimetik und den Materialwissenschaften. Angewandte Chemie, 113(1), 76-94. doi:10.1002/1521-3757(20010105)113:1<76::aid-ange76>3.0.co;2-f

Hecht, S., & Fréchet, J. M. J. (2001). Dendritic Encapsulation of Function: Applying Nature’s Site Isolation Principle from Biomimetics to Materials Science. Angewandte Chemie International Edition, 40(1), 74-91. doi:10.1002/1521-3773(20010105)40:1<74::aid-anie74>3.0.co;2-c

Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. doi:10.1038/35104607

Sun, L., Hammarström, L., Åkermark, B., & Styring, S. (2001). Towards artificial photosynthesis: ruthenium–manganese chemistry for energy production. Chemical Society Reviews, 30(1), 36-49. doi:10.1039/a801490f

, , Molecular Devices and Machines—A Journey into the Nanoworld, Wiley-VCH, Weinheim, 2003;

Balzani, V. (2003). Photochemical molecular devices. Photochemical & Photobiological Sciences, 2(5), 459. doi:10.1039/b300075n

Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1-3), 3-14. doi:10.1016/j.jphotochem.2004.02.023

De Silva, A. P., & McClenaghan, N. D. (2004). Molecular-Scale Logic Gates. Chemistry - A European Journal, 10(3), 574-586. doi:10.1002/chem.200305054

Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., & von Zelewsky, A. (1988). Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews, 84, 85-277. doi:10.1016/0010-8545(88)80032-8

Kober, E. M., Caspar, J. V., Sullivan, B. P., & Meyer, T. J. (1988). Synthetic routes to new polypyridyl complexes of osmium(II). Inorganic Chemistry, 27(25), 4587-4598. doi:10.1021/ic00298a017

Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, London, 1992.

Sauvage, J. P., Collin, J. P., Chambron, J. C., Guillerez, S., Coudret, C., Balzani, V., … Flamigni, L. (1994). Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties. Chemical Reviews, 94(4), 993-1019. doi:10.1021/cr00028a006

Balzani, V., Juris, A., Venturi, M., Campagna, S., & Serroni, S. (1996). Luminescent and Redox-Active Polynuclear Transition Metal Complexes†. Chemical Reviews, 96(2), 759-834. doi:10.1021/cr941154y

De Cola, L. (1998). Photoinduced energy and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes. Coordination Chemistry Reviews, 177(1), 301-346. doi:10.1016/s0010-8545(98)00198-2

Harriman, A., & Ziessel, R. (1998). Building photoactive molecular-scale wires. Coordination Chemistry Reviews, 171, 331-339. doi:10.1016/s0010-8545(98)90049-2

in Electron Transfer in Chemistry, Vol. 5 (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 97-136;

Brunschwig, B. S., Creutz, C., & Sutin, N. (2002). Optical transitions of symmetrical mixed-valence systems in the Class II–III transition regimeElectronic supplementary information (ESI) is available: derivation of eqn. (39c), table summarizing the relationships between band maxima and band widths predicted by the two-state model and table of spectral properties of mixed-valence ruthenium(II)/(III) bridged by pyrazine and dicyanamide. See http://www.rsc.org/suppdata/cs/b0/b008034i/. Chemical Society Reviews, 31(3), 168-184. doi:10.1039/b008034i

Henze, O., Lentz, D., & Schlüter, A. D. (2000). Synthesis and an X-ray Structure of Soluble Phenylacetylene Macrocycles with Two Opposing Bipyridine Donor Sites. Chemistry - A European Journal, 6(13), 2362-2367. doi:10.1002/1521-3765(20000703)6:13<2362::aid-chem2362>3.0.co;2-g

Grave, C., & Schlüter, A. D. (2002). Shape-Persistent, Nano-Sized Macrocycles. European Journal of Organic Chemistry, 2002(18), 3075-3098. doi:10.1002/1099-0690(200209)2002:18<3075::aid-ejoc3075>3.0.co;2-3

Zhao, D., & Moore, J. S. (2002). Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chemical Communications, (7), 807-818. doi:10.1039/b207442g

Baxter, P. N. W. (2003). Synthesis of a Hexagonal Nanosized Macrocyclic Fluorophore with Integrated Endotopic Terpyridine Metal-Chelation Sites. Chemistry - A European Journal, 9(20), 5011-5022. doi:10.1002/chem.200304786

Grave, C., Lentz, D., Schäfer, A., Samorì, P., Rabe, J. P., Franke, P., & Schlüter, A. D. (2003). Shape-Persistant Macrocycles with Terpyridine Units:  Synthesis, Characterization, and Structure in the Crystal. Journal of the American Chemical Society, 125(23), 6907-6918. doi:10.1021/ja034029p

Yamaguchi, Y., & Yoshida, Z. (2003). Shape-persistency and Molecular Function in Heteromacrocycles: Creation of Heteroarenecyclynes and Arene–Azaarenecyclynes. Chemistry - A European Journal, 9(22), 5430-5440. doi:10.1002/chem.200305099

Höger, S. (2004). Shape-Persistent Macrocycles: From Molecules to Materials. Chemistry - A European Journal, 10(6), 1320-1329. doi:10.1002/chem.200305496

Fischer, M., Lieser, G., Rapp, A., Schnell, I., Mamdouh, W., De Feyter, S., … Höger, S. (2004). Shape-Persistent Macrocycles with Intraannular Polar Groups:  Synthesis, Liquid Crystallinity, and 2D Organization. Journal of the American Chemical Society, 126(1), 214-222. doi:10.1021/ja038484x

Scott, L. T., DeCicco, G. J., Hyun, J. L., & Reinhardt, G. (1985). Cyclynes. Part 4. Pericyclynes of the order [5], [6], [7], and [8]. Simple convergent syntheses and chemical reactions of the first homoconjugated cyclic polyacetylenes. Journal of the American Chemical Society, 107(23), 6546-6555. doi:10.1021/ja00309a021

Henze, O., Lentz, D., Schäfer, A., Franke, P., & Schlüter, A. D. (2002). Phenylacetylene Macrocycles with Two Opposing Bipyridine Donor Sites: Syntheses, X-ray Structure Determinations, and Ru Complexation. Chemistry - A European Journal, 8(2), 357-365. doi:10.1002/1521-3765(20020118)8:2<357::aid-chem357>3.0.co;2-9

Venturi, M., Marchioni, F., Balzani, V., Opris, D. M., Henze, O., & Schlüter, A. D. (2003). A Photophysical and Electrochemical Investigation on a Phenylacetylene Macrocycle Containing Two 2,2′-Bipyridine Units, Its Protonated Forms, and RuII and OsII Complexes. European Journal of Organic Chemistry, 2003(21), 4227-4233. doi:10.1002/ejoc.200300384

Buckingham, D., Dwyer, F., Goodwin, H., & Sargeson, A. (1964). Mono- and Bis-(2,2’-bipyridine) and (1,10-phenanthroline) chelates of ruthenium and osmium. IV. Bis chelates of bivalent and tervalent osmium. Australian Journal of Chemistry, 17(3), 325. doi:10.1071/ch9640325

Amabilino, D. B., Asakawa, M., Ashton, P. R., Ballardini, R., Balzani, V., Be˘lohradský, M., … Yase, K. (1998). Aggregation of self-assembling branched [n]rotaxanes. New Journal of Chemistry, 22(9), 959-972. doi:10.1039/a802784f

in Electron Transfer in Chemistry, Vol. 5 (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 3-47.

Höger, S., Bonrad, K., Mourran, A., Beginn, U., & Möller, M. (2001). Synthesis, Aggregation, and Adsorption Phenomena of Shape-Persistent Macrocycles with Extraannular Polyalkyl Substituents. Journal of the American Chemical Society, 123(24), 5651-5659. doi:10.1021/ja003990x

Fletcher, N. C., Keene, F. R., Viebrock, H., & von Zelewsky, A. (1997). Molecular Architecture of Polynuclear Ruthenium Bipyridyl Complexes with Controlled Metal Helicity. Inorganic Chemistry, 36(6), 1113-1121. doi:10.1021/ic960948n

Campagna, S., Serroni, S., Bodige, S., & MacDonnell, F. M. (1999). Absorption Spectra, Photophysical Properties, and Redox Behavior of Stereochemically Pure Dendritic Ruthenium(II) Tetramers and Related Dinuclear and Mononuclear Complexes. Inorganic Chemistry, 38(4), 692-701. doi:10.1021/ic9811852

Glover-Fischer, D. P., Metcalf, D. H., Bolender, J. P., & Richardson, F. S. (1995). Chiral discrimination in electronic energy-transfer processes in solution. Effects of temperature and solution properties on chirality-dependent rate parameters. Chemical Physics, 198(1-2), 207-234. doi:10.1016/0301-0104(95)00173-l

Hamada, T., Brunschwig, B. S., Eifuku, K., Fujita, E., Körner, M., Sakaki, S., … Wishart, J. F. (1999). Enantioselectivities in Electron-Transfer and Excited State Quenching Reactions of a Chiral Ruthenium Complex Possessing a Helical Structure. The Journal of Physical Chemistry A, 103(29), 5645-5654. doi:10.1021/jp991116o

Főrster, T. (1959). 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc., 27(0), 7-17. doi:10.1039/df9592700007

Dexter, D. L. (1953). A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics, 21(5), 836-850. doi:10.1063/1.1699044

Miller, J. R., & Beitz, J. V. (1981). Long range transfer of positive charge between dopant molecules in a rigid glassy matrix. The Journal of Chemical Physics, 74(12), 6746-6756. doi:10.1063/1.441078

McConnell, H. M. (1961). Intramolecular Charge Transfer in Aromatic Free Radicals. The Journal of Chemical Physics, 35(2), 508-515. doi:10.1063/1.1731961

Ryu, C. K., & Schmehl, R. H. (1989). Solvent and temperature dependence of intramolecular energy transfer in the complex [(dmb)2Ru(b-b)Ru(dmb)(CN)2]2+. The Journal of Physical Chemistry, 93(23), 7961-7966. doi:10.1021/j100360a043

Furue, M., Yoshidzumi, T., Kinoshita, S., Kushida, T., Nozakura, S., & Kamachi, M. (1991). Intramolecular Energy Transfer in Covalently Linked Polypyridine Ruthenium(II)/Osmium(II) Binuclear Complexes. Ru(II)(bpy)2Mebpy– (CH2)n–MebpyOs(II)(bpy)2(n=2, 3, 5, and 7). Bulletin of the Chemical Society of Japan, 64(5), 1632-1640. doi:10.1246/bcsj.64.1632

Schmehl, R. H., Auerbach, R. A., Wacholtz, W. F., Elliott, C. M., Freitag, R. A., & Merkert, J. W. (1986). Formation and photophysical properties of iron-ruthenium tetranuclear bipyridyl complexes of the type {[(bpy)2Ru(L-L)]3Fe}. Inorganic Chemistry, 25(14), 2440-2445. doi:10.1021/ic00234a032

Schmehl, R. H., Auerbach, R. A., & Wacholtz, W. F. (1988). Intramolecular energy transfer in the covalently linked dimeric complex [(bpy)2Ru(b-b)Ru(biq)2]4+. The Journal of Physical Chemistry, 92(22), 6202-6206. doi:10.1021/j100333a008

De Cola, L., Balzani, V., Barigelletti, F., Flamigni, L., Belser, P., von Zelewsky, A., … Voegtle, F. (1993). Photoinduced energy and electron transfer processes in supramolecular species, tris(bipyridine) complexes of ruthenium(II)/osmium(II), Ru(II)/Ru(III), Os(II)/Os(III), and Ru(II)/Os(III) separated by a rigid spacer. Inorganic Chemistry, 32(23), 5228-5238. doi:10.1021/ic00075a048

Balzani, V., Bolletta, F., & Scandola, F. (1980). Vertical and «nonvertical» energy transfer processes. A general classical treatment. Journal of the American Chemical Society, 102(7), 2152-2163. doi:10.1021/ja00527a002

Scandola, F., & Balzani, V. (1983). Energy-transfer processes of excited states of coordination compounds. Journal of Chemical Education, 60(10), 814. doi:10.1021/ed060p814

Marcus, R. A. (1964). Chemical and Electrochemical Electron-Transfer Theory. Annual Review of Physical Chemistry, 15(1), 155-196. doi:10.1146/annurev.pc.15.100164.001103

Sutin, N. (1982). Nuclear, electronic, and frequency factors in electron transfer reactions. Accounts of Chemical Research, 15(9), 275-282. doi:10.1021/ar00081a002

Collin, J. P., Guillerez, S., Sauvage, J. P., Barigelletti, F., De Cola, L., Flamigni, L., & Balzani, V. (1992). Photoinduced process in dyads and triads: an osmium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups. Inorganic Chemistry, 31(20), 4112-4117. doi:10.1021/ic00046a023

Marcus, R. A., & Sutin, N. (1985). Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 811(3), 265-322. doi:10.1016/0304-4173(85)90014-x

Above 600 nm, the absorption band of RuII1OsII is entirely due to the Os-based chromophoric group (Figure 3).

Keyes, T. E., Evrard, B., Vos, J. G., Brady, C., McGarvey, J. J., & Jayaweera, P. (2004). Electronic and photophysical properties of a novel phenol bound dinuclear ruthenium complex: evidence for a luminescent mixed valence stateElectronic supplementary information (ESI) available: Resonance Raman and ES MS spectra. See http://www.rsc.org/suppdata/dt/b4/b405114a/. Dalton Transactions, (15), 2341. doi:10.1039/b405114a

Balzani, V., Barigelletti, F., Belser, P., Bernhard, S., De Cola, L., & Flamigni, L. (1996). Rigid Rodlike Dinuclear Ru/Os Complexes of a Novel Bridging Ligand. Intercomponent Energy and Electron-Transfer Processes. The Journal of Physical Chemistry, 100(42), 16786-16788. doi:10.1021/jp962366x

Frank, M., Nieger, M., Vögtle, F., Belser, P., von Zelewsky, A., De Cola, L., … Flamigni, L. (1996). Dinuclear RuII and/or OsII complexes of bis-bipyridine bridging ligands containing adamantane spacers: synthesis, luminescence properties, intercomponent energy and electron transfer processes. Inorganica Chimica Acta, 242(1-2), 281-291. doi:10.1016/0020-1693(95)04878-2

De Cola, L., Balzani, V., Barigelletti, F., Flamigni, L., Belser, P., & Bernhard, S. (2010). Photoinduced energy- and electron-transfer processes in dinuclear ruthenium(II) and/or osmium(II) complexes connected by a linear rigid bis-chelating bridge. Recueil des Travaux Chimiques des Pays-Bas, 114(11-12), 534-541. doi:10.1002/recl.19951141119

Chiorboli, C., Rodgers, M. A. J., & Scandola, F. (2003). Ultrafast Processes in Bimetallic Dyads with Extended Aromatic Bridges. Energy and Electron Transfer Pathways in Tetrapyridophenazine-Bridged Complexes. Journal of the American Chemical Society, 125(2), 483-491. doi:10.1021/ja0284916

Bryant, G., & Fergusson, J. (1971). Charge-transfer and intraligand electronic spectra of bipyridyl complexes of iron, ruthenium, and osmium. II. Tervalent complexes. Australian Journal of Chemistry, 24(2), 275. doi:10.1071/ch9710275

For a somewhat similar behavior in a dinuclear Ru complex, see ref. [36].

in Photoinduced Electron Transfer (Eds.: ), Elsevier, New York, 1988, Part A, pp. 161-206.

Kroon, J., Oliver, A. M., Paddon-Row, M. N., & Verhoeven, J. W. (1990). Observation of a remarkable dependence of the rate of singlet-singlet energy transfer on the configuration of the hydrocarbon bridge in bichromophoric systems. Journal of the American Chemical Society, 112(12), 4868-4873. doi:10.1021/ja00168a036

Lokan, N., Paddon-Row, M. N., Smith, T. A., La Rosa, M., Ghiggino, K. P., & Speiser, S. (1999). Highly Efficient Through-Bond-Mediated Electronic Excitation Energy Transfer Taking Place over 12 Å. Journal of the American Chemical Society, 121(12), 2917-2918. doi:10.1021/ja984036r

in Electron Transfer in Chemistry, Vol. 3 (Ed.: ), Wiley-VCH, Weinheim, 2001, pp. 179-271.

Harriman, A., Hissler, M., Ziessel, R., De Cian, A., & Fisher, J. (1995). Rigid multinuclear arrays assembled around platinum centres. Journal of the Chemical Society, Dalton Transactions, (24), 4067. doi:10.1039/dt9950004067

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem