- -

Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural

Show full item record

Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2014). Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem. 7(1):210-220. https://doi.org/10.1002/cssc.201300531

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62077

Files in this item

Item Metadata

Title: Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural
Author: Arias Carrascal, Karen Sulay Climent Olmedo, María José Corma Canós, Avelino Iborra Chornet, Sara
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
A new class of biodegradable anionic surfactants with structures based on 5-alkoxymethylfuroate was prepared starting from 5-hydroxymethylfurfural (HMF), through a one-pot-two-steps process which involves the selective ...[+]
Subjects: 5-hydroxymethylfurfural , biomass , heterogeneous catalysis , surfactants , zeolites
Copyrigths: Cerrado
Source:
ChemSusChem. (issn: 1864-5631 ) (eissn: 1864-564X )
DOI: 10.1002/cssc.201300531
Publisher:
Wiley-VCH Verlag
Publisher version: http://dx.doi.org/10.1002/cssc.201300531
Project ID:
info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/
Thanks:
The authors acknowledge the Spanish Ministry of Education and Science for the financial support in the project Consolider-Ingenio 2010 and CTQ.-2011-27550. K. S. A. thanks Universidad Politecnica de Valencia and ITQ for ...[+]
Type: Artículo

References

Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., & Dumesic, J. A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 447(7147), 982-985. doi:10.1038/nature05923

Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie, 123(10), 2423-2426. doi:10.1002/ange.201007508

Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508 [+]
Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., & Dumesic, J. A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 447(7147), 982-985. doi:10.1038/nature05923

Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie, 123(10), 2423-2426. doi:10.1002/ange.201007508

Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508

Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d

Climent, M. J., Corma, A., Hernández, J. C., Hungría, A. B., Iborra, S., & Martínez-Silvestre, S. (2012). Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. Journal of Catalysis, 292, 118-129. doi:10.1016/j.jcat.2012.05.002

Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d

Weisgerber, L., Palkovits, S., & Palkovits, R. (2013). Development of a Reactor Setup for Continuous Dehydration of Carbohydrates. Chemie Ingenieur Technik, 85(4), 512-515. doi:10.1002/cite.201200203

Gallo, J. M. R., Alonso, D. M., Mellmer, M. A., & Dumesic, J. A. (2013). Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chem., 15(1), 85-90. doi:10.1039/c2gc36536g

Gorbanev, Y. Y., Klitgaard, S. K., Woodley, J. M., Christensen, C. H., & Riisager, A. (2009). Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature. ChemSusChem, 2(7), 672-675. doi:10.1002/cssc.200900059

Arias, K. S., Al-Resayes, S. I., Climent, M. J., Corma, A., & Iborra, S. (2013). From Biomass to Chemicals: Synthesis of Precursors of Biodegradable Surfactants from 5-Hydroxymethylfurfural. ChemSusChem, 6(1), 123-131. doi:10.1002/cssc.201200513

Kjellin, M., & Johansson, I. (Eds.). (2010). Surfactants from Renewable Resources. doi:10.1002/9780470686607

Foley, P., Kermanshahi pour, A., Beach, E. S., & Zimmerman, J. B. (2012). Derivation and synthesis of renewable surfactants. Chem. Soc. Rev., 41(4), 1499-1518. doi:10.1039/c1cs15217c

Van Es, D. S., Marinkovic, S., Oduber, X., & Estrine, B. (2012). Use of Furandicarboxylic Acid and Its Decyl Ester as Additives in the Fischer’s Glycosylation of Decanol by d-Glucose: Physicochemical Properties of the Surfactant Compositions Obtained. Journal of Surfactants and Detergents, 16(2), 147-154. doi:10.1007/s11743-012-1382-8

Kraus, G. A., & Lee, J. J. (2012). A Direct Synthesis of Renewable Sulfonate-Based Surfactants. Journal of Surfactants and Detergents, 16(3), 317-320. doi:10.1007/s11743-012-1408-2

R. A. Parker 1977

G. J. M. Gruter F. Dautzenberg 2007

G. J. M. Gruter 2010

G. J. M. Gruter L. E. Manzer 2010

G. J. M. Gruter L. E Manzer 2009

Lai, L., & Zhang, Y. (2011). The Production of 5-Hydroxymethylfurfural from Fructose in Isopropyl Alcohol: A Green and Efficient System. ChemSusChem, 4(12), 1745-1748. doi:10.1002/cssc.201100489

Balakrishnan, M., Sacia, E. R., & Bell, A. T. (2012). Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chemistry, 14(6), 1626. doi:10.1039/c2gc35102a

Bing, L., Zhang, Z., & Deng, K. (2012). Efficient One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Fructose Catalyzed by a Novel Solid Catalyst. Industrial & Engineering Chemistry Research, 51(47), 15331-15336. doi:10.1021/ie3020445

Che, P., Lu, F., Zhang, J., Huang, Y., Nie, X., Gao, J., & Xu, J. (2012). Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production. Bioresource Technology, 119, 433-436. doi:10.1016/j.biortech.2012.06.001

Lew, C. M., Rajabbeigi, N., & Tsapatsis, M. (2012). One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Glucose Using Sn-BEA and Amberlyst Catalysts. Industrial & Engineering Chemistry Research, 51(14), 5364-5366. doi:10.1021/ie2025536

Lanzafame, P., Temi, D. M., Perathoner, S., Centi, G., Macario, A., Aloise, A., & Giordano, G. (2011). Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catalysis Today, 175(1), 435-441. doi:10.1016/j.cattod.2011.05.008

Shi, B. C., & Davis, B. H. (1995). Alcohol Dehydration: Mechanism of Ether Formation Using an Alumina Catalyst. Journal of Catalysis, 157(2), 359-367. doi:10.1006/jcat.1995.1301

Bautista, F. (1995). 1-Butanol dehydration on AlPO4 and modified AlPO4: catalytic behaviour and deactivation. Applied Catalysis A: General, 130(1), 47-65. doi:10.1016/0926-860x(95)00106-9

Berteau, P., Ceckiewicz, S., & Delmon, B. (1987). Role of the acid-base properties of aluminas, modified γ-alumina, and silica-alumina in 1-butanol dehydration. Applied Catalysis, 31(2), 361-383. doi:10.1016/s0166-9834(00)80702-2

Collignon, F., Loenders, R., Martens, J. A., Jacobs, P. A., & Poncelet, G. (1999). Liquid Phase Synthesis of MTBE from Methanol and Isobutene over Acid Zeolites and Amberlyst-15. Journal of Catalysis, 182(2), 302-312. doi:10.1006/jcat.1998.2366

RODRIGUEZ, I., CLIMENT, M., IBORRA, S., FORNES, V., & CORMA, A. (2000). Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 192(2), 441-447. doi:10.1006/jcat.2000.2861

Boronat, M., Corma, A., Renz, M., & Viruela, P. M. (2006). Predicting the Activity of Single Isolated Lewis Acid Sites in Solid Catalysts. Chemistry - A European Journal, 12(27), 7067-7077. doi:10.1002/chem.200600478

Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie, 119(1-2), 302-304. doi:10.1002/ange.200604018

Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie International Edition, 46(1-2), 298-300. doi:10.1002/anie.200604018

Casanova, O., Iborra, S., & Corma, A. (2010). Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5′(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts. Journal of Catalysis, 275(2), 236-242. doi:10.1016/j.jcat.2010.08.002

CLIMENT, M., CORMA, A., & IBORRA, S. (2005). Synthesis of nonsteroidal drugs with anti-inflammatory and analgesic activities with zeolites and mesoporous molecular sieve catalysts. Journal of Catalysis, 233(2), 308-316. doi:10.1016/j.jcat.2005.05.003

A. Shaikh M. E. Janka D. M. Lange M. C. Morrow B. R. Bowers K. R. Parker L. R. Partin J. C. Jenkins P. Moody T. E. Shanks C. E. Sumner 2012

Corma, A., & Domine, M. E. (2005). Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase. Chemical Communications, (32), 4042. doi:10.1039/b506685a

Casanova, O., Iborra, S., & Corma, A. (2009). Biomass into Chemicals: Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts. ChemSusChem, 2(12), 1138-1144. doi:10.1002/cssc.200900137

Zhang, L., & Kozmin, S. A. (2004). Gold-Catalyzed Cycloisomerization of Siloxy Enynes to Cyclohexadienes. Journal of the American Chemical Society, 126(38), 11806-11807. doi:10.1021/ja046112y

Tüysüz, H., Lehmann, C. W., Bongard, H., Tesche, B., Schmidt, R., & Schüth, F. (2008). Direct Imaging of Surface Topology and Pore System of Ordered Mesoporous Silica (MCM-41, SBA-15, and KIT-6) and Nanocast Metal Oxides by High Resolution Scanning Electron Microscopy. Journal of the American Chemical Society, 130(34), 11510-11517. doi:10.1021/ja803362s

Fu, Q. (2003). Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science, 301(5635), 935-938. doi:10.1126/science.1085721

Guzman, J., Carrettin, S., & Corma, A. (2005). Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. Journal of the American Chemical Society, 127(10), 3286-3287. doi:10.1021/ja043752s

Guzman, J., Carrettin, S., Fierro-Gonzalez, J. C., Hao, Y., Gates, B. C., & Corma, A. (2005). CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare-Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angewandte Chemie, 117(30), 4856-4859. doi:10.1002/ange.200500659

Guzman, J., Carrettin, S., Fierro-Gonzalez, J. C., Hao, Y., Gates, B. C., & Corma, A. (2005). CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare-Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angewandte Chemie International Edition, 44(30), 4778-4781. doi:10.1002/anie.200500659

Estrine, B., Bouquillon, S., Hénin, F., & Muzart, J. (2005). Telomerization of butadiene with pentoses in water: selective etherifications. Green Chem., 7(4), 219-223. doi:10.1039/b418236g

Corma, A., Iborra, S., Miquel, S., & Primo, J. (1998). Preparation of Long-Chain Alkyl Glucoside Surfactants by One-Step Direct Fischer Glucosidation, and by Transacetalation of Butyl Glucosides, on Beta Zeolite Catalysts. Journal of Catalysis, 180(2), 218-224. doi:10.1006/jcat.1998.2272

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record