Mostrar el registro sencillo del ítem
dc.contributor.author | Arias Carrascal, Karen Sulay | es_ES |
dc.contributor.author | Climent Olmedo, María José | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Iborra Chornet, Sara | es_ES |
dc.date.accessioned | 2016-03-30T09:05:08Z | |
dc.date.issued | 2014-02 | |
dc.identifier.issn | 1864-5631 | |
dc.identifier.uri | http://hdl.handle.net/10251/62077 | |
dc.description.abstract | A new class of biodegradable anionic surfactants with structures based on 5-alkoxymethylfuroate was prepared starting from 5-hydroxymethylfurfural (HMF), through a one-pot-two-steps process which involves the selective etherification of HMF with fatty alcohols using heterogeneous solid acid, followed by a highly selective oxidation of the formyl group with a gold catalyst. The etherification step was optimized using aluminosilicates as acid catalysts with different pore topologies (H-Beta, HY, Mordenite, ZSM-5, ITQ-2, and MCM-41), different active sites (Bronsted or Lewis) and different adsorption properties. It was shown that highly hydrophobic defect-free H-Beta zeolites with Si/Al ratios higher than 25 are excellent acid catalysts to perform the selective etherification of HMF with fatty alcohols, avoiding the competitive self-etherification of HMF. Moreover, the 5-alkoxymethylfurfural derivatives obtained can be selectively oxidized to the corresponding furoic salts in excellent yield using Au/CeO2 as catalyst and air as oxidant, at moderated temperatures. Both H-Beta zeolite and Au/CeO2 could be reused several times without loss of activity. | es_ES |
dc.description.sponsorship | The authors acknowledge the Spanish Ministry of Education and Science for the financial support in the project Consolider-Ingenio 2010 and CTQ.-2011-27550. K. S. A. thanks Universidad Politecnica de Valencia and ITQ for FPI fellowships. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | ChemSusChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 5-hydroxymethylfurfural | es_ES |
dc.subject | biomass | es_ES |
dc.subject | heterogeneous catalysis | es_ES |
dc.subject | surfactants | es_ES |
dc.subject | zeolites | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cssc.201300531 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2014). Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem. 7(1):210-220. https://doi.org/10.1002/cssc.201300531 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cssc.201300531 | es_ES |
dc.description.upvformatpinicio | 210 | es_ES |
dc.description.upvformatpfin | 220 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 249452 | es_ES |
dc.identifier.eissn | 1864-564X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Instituto de Tecnología Química UPV-CSIC | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., & Dumesic, J. A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 447(7147), 982-985. doi:10.1038/nature05923 | es_ES |
dc.description.references | Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie, 123(10), 2423-2426. doi:10.1002/ange.201007508 | es_ES |
dc.description.references | Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508 | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d | es_ES |
dc.description.references | Climent, M. J., Corma, A., Hernández, J. C., Hungría, A. B., Iborra, S., & Martínez-Silvestre, S. (2012). Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. Journal of Catalysis, 292, 118-129. doi:10.1016/j.jcat.2012.05.002 | es_ES |
dc.description.references | Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d | es_ES |
dc.description.references | Weisgerber, L., Palkovits, S., & Palkovits, R. (2013). Development of a Reactor Setup for Continuous Dehydration of Carbohydrates. Chemie Ingenieur Technik, 85(4), 512-515. doi:10.1002/cite.201200203 | es_ES |
dc.description.references | Gallo, J. M. R., Alonso, D. M., Mellmer, M. A., & Dumesic, J. A. (2013). Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chem., 15(1), 85-90. doi:10.1039/c2gc36536g | es_ES |
dc.description.references | Gorbanev, Y. Y., Klitgaard, S. K., Woodley, J. M., Christensen, C. H., & Riisager, A. (2009). Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature. ChemSusChem, 2(7), 672-675. doi:10.1002/cssc.200900059 | es_ES |
dc.description.references | Arias, K. S., Al-Resayes, S. I., Climent, M. J., Corma, A., & Iborra, S. (2013). From Biomass to Chemicals: Synthesis of Precursors of Biodegradable Surfactants from 5-Hydroxymethylfurfural. ChemSusChem, 6(1), 123-131. doi:10.1002/cssc.201200513 | es_ES |
dc.description.references | Kjellin, M., & Johansson, I. (Eds.). (2010). Surfactants from Renewable Resources. doi:10.1002/9780470686607 | es_ES |
dc.description.references | Foley, P., Kermanshahi pour, A., Beach, E. S., & Zimmerman, J. B. (2012). Derivation and synthesis of renewable surfactants. Chem. Soc. Rev., 41(4), 1499-1518. doi:10.1039/c1cs15217c | es_ES |
dc.description.references | Van Es, D. S., Marinkovic, S., Oduber, X., & Estrine, B. (2012). Use of Furandicarboxylic Acid and Its Decyl Ester as Additives in the Fischer’s Glycosylation of Decanol by d-Glucose: Physicochemical Properties of the Surfactant Compositions Obtained. Journal of Surfactants and Detergents, 16(2), 147-154. doi:10.1007/s11743-012-1382-8 | es_ES |
dc.description.references | Kraus, G. A., & Lee, J. J. (2012). A Direct Synthesis of Renewable Sulfonate-Based Surfactants. Journal of Surfactants and Detergents, 16(3), 317-320. doi:10.1007/s11743-012-1408-2 | es_ES |
dc.description.references | R. A. Parker 1977 | es_ES |
dc.description.references | G. J. M. Gruter F. Dautzenberg 2007 | es_ES |
dc.description.references | G. J. M. Gruter 2010 | es_ES |
dc.description.references | G. J. M. Gruter L. E. Manzer 2010 | es_ES |
dc.description.references | G. J. M. Gruter L. E Manzer 2009 | es_ES |
dc.description.references | Lai, L., & Zhang, Y. (2011). The Production of 5-Hydroxymethylfurfural from Fructose in Isopropyl Alcohol: A Green and Efficient System. ChemSusChem, 4(12), 1745-1748. doi:10.1002/cssc.201100489 | es_ES |
dc.description.references | Balakrishnan, M., Sacia, E. R., & Bell, A. T. (2012). Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chemistry, 14(6), 1626. doi:10.1039/c2gc35102a | es_ES |
dc.description.references | Bing, L., Zhang, Z., & Deng, K. (2012). Efficient One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Fructose Catalyzed by a Novel Solid Catalyst. Industrial & Engineering Chemistry Research, 51(47), 15331-15336. doi:10.1021/ie3020445 | es_ES |
dc.description.references | Che, P., Lu, F., Zhang, J., Huang, Y., Nie, X., Gao, J., & Xu, J. (2012). Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production. Bioresource Technology, 119, 433-436. doi:10.1016/j.biortech.2012.06.001 | es_ES |
dc.description.references | Lew, C. M., Rajabbeigi, N., & Tsapatsis, M. (2012). One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Glucose Using Sn-BEA and Amberlyst Catalysts. Industrial & Engineering Chemistry Research, 51(14), 5364-5366. doi:10.1021/ie2025536 | es_ES |
dc.description.references | Lanzafame, P., Temi, D. M., Perathoner, S., Centi, G., Macario, A., Aloise, A., & Giordano, G. (2011). Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catalysis Today, 175(1), 435-441. doi:10.1016/j.cattod.2011.05.008 | es_ES |
dc.description.references | Shi, B. C., & Davis, B. H. (1995). Alcohol Dehydration: Mechanism of Ether Formation Using an Alumina Catalyst. Journal of Catalysis, 157(2), 359-367. doi:10.1006/jcat.1995.1301 | es_ES |
dc.description.references | Bautista, F. (1995). 1-Butanol dehydration on AlPO4 and modified AlPO4: catalytic behaviour and deactivation. Applied Catalysis A: General, 130(1), 47-65. doi:10.1016/0926-860x(95)00106-9 | es_ES |
dc.description.references | Berteau, P., Ceckiewicz, S., & Delmon, B. (1987). Role of the acid-base properties of aluminas, modified γ-alumina, and silica-alumina in 1-butanol dehydration. Applied Catalysis, 31(2), 361-383. doi:10.1016/s0166-9834(00)80702-2 | es_ES |
dc.description.references | Collignon, F., Loenders, R., Martens, J. A., Jacobs, P. A., & Poncelet, G. (1999). Liquid Phase Synthesis of MTBE from Methanol and Isobutene over Acid Zeolites and Amberlyst-15. Journal of Catalysis, 182(2), 302-312. doi:10.1006/jcat.1998.2366 | es_ES |
dc.description.references | RODRIGUEZ, I., CLIMENT, M., IBORRA, S., FORNES, V., & CORMA, A. (2000). Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 192(2), 441-447. doi:10.1006/jcat.2000.2861 | es_ES |
dc.description.references | Boronat, M., Corma, A., Renz, M., & Viruela, P. M. (2006). Predicting the Activity of Single Isolated Lewis Acid Sites in Solid Catalysts. Chemistry - A European Journal, 12(27), 7067-7077. doi:10.1002/chem.200600478 | es_ES |
dc.description.references | Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie, 119(1-2), 302-304. doi:10.1002/ange.200604018 | es_ES |
dc.description.references | Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie International Edition, 46(1-2), 298-300. doi:10.1002/anie.200604018 | es_ES |
dc.description.references | Casanova, O., Iborra, S., & Corma, A. (2010). Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5′(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts. Journal of Catalysis, 275(2), 236-242. doi:10.1016/j.jcat.2010.08.002 | es_ES |
dc.description.references | CLIMENT, M., CORMA, A., & IBORRA, S. (2005). Synthesis of nonsteroidal drugs with anti-inflammatory and analgesic activities with zeolites and mesoporous molecular sieve catalysts. Journal of Catalysis, 233(2), 308-316. doi:10.1016/j.jcat.2005.05.003 | es_ES |
dc.description.references | A. Shaikh M. E. Janka D. M. Lange M. C. Morrow B. R. Bowers K. R. Parker L. R. Partin J. C. Jenkins P. Moody T. E. Shanks C. E. Sumner 2012 | es_ES |
dc.description.references | Corma, A., & Domine, M. E. (2005). Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase. Chemical Communications, (32), 4042. doi:10.1039/b506685a | es_ES |
dc.description.references | Casanova, O., Iborra, S., & Corma, A. (2009). Biomass into Chemicals: Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts. ChemSusChem, 2(12), 1138-1144. doi:10.1002/cssc.200900137 | es_ES |
dc.description.references | Zhang, L., & Kozmin, S. A. (2004). Gold-Catalyzed Cycloisomerization of Siloxy Enynes to Cyclohexadienes. Journal of the American Chemical Society, 126(38), 11806-11807. doi:10.1021/ja046112y | es_ES |
dc.description.references | Tüysüz, H., Lehmann, C. W., Bongard, H., Tesche, B., Schmidt, R., & Schüth, F. (2008). Direct Imaging of Surface Topology and Pore System of Ordered Mesoporous Silica (MCM-41, SBA-15, and KIT-6) and Nanocast Metal Oxides by High Resolution Scanning Electron Microscopy. Journal of the American Chemical Society, 130(34), 11510-11517. doi:10.1021/ja803362s | es_ES |
dc.description.references | Fu, Q. (2003). Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science, 301(5635), 935-938. doi:10.1126/science.1085721 | es_ES |
dc.description.references | Guzman, J., Carrettin, S., & Corma, A. (2005). Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. Journal of the American Chemical Society, 127(10), 3286-3287. doi:10.1021/ja043752s | es_ES |
dc.description.references | Guzman, J., Carrettin, S., Fierro-Gonzalez, J. C., Hao, Y., Gates, B. C., & Corma, A. (2005). CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare-Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angewandte Chemie, 117(30), 4856-4859. doi:10.1002/ange.200500659 | es_ES |
dc.description.references | Guzman, J., Carrettin, S., Fierro-Gonzalez, J. C., Hao, Y., Gates, B. C., & Corma, A. (2005). CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare-Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angewandte Chemie International Edition, 44(30), 4778-4781. doi:10.1002/anie.200500659 | es_ES |
dc.description.references | Estrine, B., Bouquillon, S., Hénin, F., & Muzart, J. (2005). Telomerization of butadiene with pentoses in water: selective etherifications. Green Chem., 7(4), 219-223. doi:10.1039/b418236g | es_ES |
dc.description.references | Corma, A., Iborra, S., Miquel, S., & Primo, J. (1998). Preparation of Long-Chain Alkyl Glucoside Surfactants by One-Step Direct Fischer Glucosidation, and by Transacetalation of Butyl Glucosides, on Beta Zeolite Catalysts. Journal of Catalysis, 180(2), 218-224. doi:10.1006/jcat.1998.2272 | es_ES |
dc.description.references | Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 | es_ES |
dc.description.references | Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 | es_ES |