- -

Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arias Carrascal, Karen Sulay es_ES
dc.contributor.author Climent Olmedo, María José es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Iborra Chornet, Sara es_ES
dc.date.accessioned 2016-03-30T09:05:08Z
dc.date.issued 2014-02
dc.identifier.issn 1864-5631
dc.identifier.uri http://hdl.handle.net/10251/62077
dc.description.abstract A new class of biodegradable anionic surfactants with structures based on 5-alkoxymethylfuroate was prepared starting from 5-hydroxymethylfurfural (HMF), through a one-pot-two-steps process which involves the selective etherification of HMF with fatty alcohols using heterogeneous solid acid, followed by a highly selective oxidation of the formyl group with a gold catalyst. The etherification step was optimized using aluminosilicates as acid catalysts with different pore topologies (H-Beta, HY, Mordenite, ZSM-5, ITQ-2, and MCM-41), different active sites (Bronsted or Lewis) and different adsorption properties. It was shown that highly hydrophobic defect-free H-Beta zeolites with Si/Al ratios higher than 25 are excellent acid catalysts to perform the selective etherification of HMF with fatty alcohols, avoiding the competitive self-etherification of HMF. Moreover, the 5-alkoxymethylfurfural derivatives obtained can be selectively oxidized to the corresponding furoic salts in excellent yield using Au/CeO2 as catalyst and air as oxidant, at moderated temperatures. Both H-Beta zeolite and Au/CeO2 could be reused several times without loss of activity. es_ES
dc.description.sponsorship The authors acknowledge the Spanish Ministry of Education and Science for the financial support in the project Consolider-Ingenio 2010 and CTQ.-2011-27550. K. S. A. thanks Universidad Politecnica de Valencia and ITQ for FPI fellowships. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemSusChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 5-hydroxymethylfurfural es_ES
dc.subject biomass es_ES
dc.subject heterogeneous catalysis es_ES
dc.subject surfactants es_ES
dc.subject zeolites es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cssc.201300531
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2014). Biomass-Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem. 7(1):210-220. https://doi.org/10.1002/cssc.201300531 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cssc.201300531 es_ES
dc.description.upvformatpinicio 210 es_ES
dc.description.upvformatpfin 220 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 249452 es_ES
dc.identifier.eissn 1864-564X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto de Tecnología Química UPV-CSIC es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., & Dumesic, J. A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 447(7147), 982-985. doi:10.1038/nature05923 es_ES
dc.description.references Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie, 123(10), 2423-2426. doi:10.1002/ange.201007508 es_ES
dc.description.references Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508 es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d es_ES
dc.description.references Climent, M. J., Corma, A., Hernández, J. C., Hungría, A. B., Iborra, S., & Martínez-Silvestre, S. (2012). Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. Journal of Catalysis, 292, 118-129. doi:10.1016/j.jcat.2012.05.002 es_ES
dc.description.references Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d es_ES
dc.description.references Weisgerber, L., Palkovits, S., & Palkovits, R. (2013). Development of a Reactor Setup for Continuous Dehydration of Carbohydrates. Chemie Ingenieur Technik, 85(4), 512-515. doi:10.1002/cite.201200203 es_ES
dc.description.references Gallo, J. M. R., Alonso, D. M., Mellmer, M. A., & Dumesic, J. A. (2013). Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chem., 15(1), 85-90. doi:10.1039/c2gc36536g es_ES
dc.description.references Gorbanev, Y. Y., Klitgaard, S. K., Woodley, J. M., Christensen, C. H., & Riisager, A. (2009). Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature. ChemSusChem, 2(7), 672-675. doi:10.1002/cssc.200900059 es_ES
dc.description.references Arias, K. S., Al-Resayes, S. I., Climent, M. J., Corma, A., & Iborra, S. (2013). From Biomass to Chemicals: Synthesis of Precursors of Biodegradable Surfactants from 5-Hydroxymethylfurfural. ChemSusChem, 6(1), 123-131. doi:10.1002/cssc.201200513 es_ES
dc.description.references Kjellin, M., & Johansson, I. (Eds.). (2010). Surfactants from Renewable Resources. doi:10.1002/9780470686607 es_ES
dc.description.references Foley, P., Kermanshahi pour, A., Beach, E. S., & Zimmerman, J. B. (2012). Derivation and synthesis of renewable surfactants. Chem. Soc. Rev., 41(4), 1499-1518. doi:10.1039/c1cs15217c es_ES
dc.description.references Van Es, D. S., Marinkovic, S., Oduber, X., & Estrine, B. (2012). Use of Furandicarboxylic Acid and Its Decyl Ester as Additives in the Fischer’s Glycosylation of Decanol by d-Glucose: Physicochemical Properties of the Surfactant Compositions Obtained. Journal of Surfactants and Detergents, 16(2), 147-154. doi:10.1007/s11743-012-1382-8 es_ES
dc.description.references Kraus, G. A., & Lee, J. J. (2012). A Direct Synthesis of Renewable Sulfonate-Based Surfactants. Journal of Surfactants and Detergents, 16(3), 317-320. doi:10.1007/s11743-012-1408-2 es_ES
dc.description.references R. A. Parker 1977 es_ES
dc.description.references G. J. M. Gruter F. Dautzenberg 2007 es_ES
dc.description.references G. J. M. Gruter 2010 es_ES
dc.description.references G. J. M. Gruter L. E. Manzer 2010 es_ES
dc.description.references G. J. M. Gruter L. E Manzer 2009 es_ES
dc.description.references Lai, L., & Zhang, Y. (2011). The Production of 5-Hydroxymethylfurfural from Fructose in Isopropyl Alcohol: A Green and Efficient System. ChemSusChem, 4(12), 1745-1748. doi:10.1002/cssc.201100489 es_ES
dc.description.references Balakrishnan, M., Sacia, E. R., & Bell, A. T. (2012). Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chemistry, 14(6), 1626. doi:10.1039/c2gc35102a es_ES
dc.description.references Bing, L., Zhang, Z., & Deng, K. (2012). Efficient One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Fructose Catalyzed by a Novel Solid Catalyst. Industrial & Engineering Chemistry Research, 51(47), 15331-15336. doi:10.1021/ie3020445 es_ES
dc.description.references Che, P., Lu, F., Zhang, J., Huang, Y., Nie, X., Gao, J., & Xu, J. (2012). Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production. Bioresource Technology, 119, 433-436. doi:10.1016/j.biortech.2012.06.001 es_ES
dc.description.references Lew, C. M., Rajabbeigi, N., & Tsapatsis, M. (2012). One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Glucose Using Sn-BEA and Amberlyst Catalysts. Industrial & Engineering Chemistry Research, 51(14), 5364-5366. doi:10.1021/ie2025536 es_ES
dc.description.references Lanzafame, P., Temi, D. M., Perathoner, S., Centi, G., Macario, A., Aloise, A., & Giordano, G. (2011). Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catalysis Today, 175(1), 435-441. doi:10.1016/j.cattod.2011.05.008 es_ES
dc.description.references Shi, B. C., & Davis, B. H. (1995). Alcohol Dehydration: Mechanism of Ether Formation Using an Alumina Catalyst. Journal of Catalysis, 157(2), 359-367. doi:10.1006/jcat.1995.1301 es_ES
dc.description.references Bautista, F. (1995). 1-Butanol dehydration on AlPO4 and modified AlPO4: catalytic behaviour and deactivation. Applied Catalysis A: General, 130(1), 47-65. doi:10.1016/0926-860x(95)00106-9 es_ES
dc.description.references Berteau, P., Ceckiewicz, S., & Delmon, B. (1987). Role of the acid-base properties of aluminas, modified γ-alumina, and silica-alumina in 1-butanol dehydration. Applied Catalysis, 31(2), 361-383. doi:10.1016/s0166-9834(00)80702-2 es_ES
dc.description.references Collignon, F., Loenders, R., Martens, J. A., Jacobs, P. A., & Poncelet, G. (1999). Liquid Phase Synthesis of MTBE from Methanol and Isobutene over Acid Zeolites and Amberlyst-15. Journal of Catalysis, 182(2), 302-312. doi:10.1006/jcat.1998.2366 es_ES
dc.description.references RODRIGUEZ, I., CLIMENT, M., IBORRA, S., FORNES, V., & CORMA, A. (2000). Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 192(2), 441-447. doi:10.1006/jcat.2000.2861 es_ES
dc.description.references Boronat, M., Corma, A., Renz, M., & Viruela, P. M. (2006). Predicting the Activity of Single Isolated Lewis Acid Sites in Solid Catalysts. Chemistry - A European Journal, 12(27), 7067-7077. doi:10.1002/chem.200600478 es_ES
dc.description.references Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie, 119(1-2), 302-304. doi:10.1002/ange.200604018 es_ES
dc.description.references Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie International Edition, 46(1-2), 298-300. doi:10.1002/anie.200604018 es_ES
dc.description.references Casanova, O., Iborra, S., & Corma, A. (2010). Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5′(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts. Journal of Catalysis, 275(2), 236-242. doi:10.1016/j.jcat.2010.08.002 es_ES
dc.description.references CLIMENT, M., CORMA, A., & IBORRA, S. (2005). Synthesis of nonsteroidal drugs with anti-inflammatory and analgesic activities with zeolites and mesoporous molecular sieve catalysts. Journal of Catalysis, 233(2), 308-316. doi:10.1016/j.jcat.2005.05.003 es_ES
dc.description.references A. Shaikh M. E. Janka D. M. Lange M. C. Morrow B. R. Bowers K. R. Parker L. R. Partin J. C. Jenkins P. Moody T. E. Shanks C. E. Sumner 2012 es_ES
dc.description.references Corma, A., & Domine, M. E. (2005). Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase. Chemical Communications, (32), 4042. doi:10.1039/b506685a es_ES
dc.description.references Casanova, O., Iborra, S., & Corma, A. (2009). Biomass into Chemicals: Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts. ChemSusChem, 2(12), 1138-1144. doi:10.1002/cssc.200900137 es_ES
dc.description.references Zhang, L., & Kozmin, S. A. (2004). Gold-Catalyzed Cycloisomerization of Siloxy Enynes to Cyclohexadienes. Journal of the American Chemical Society, 126(38), 11806-11807. doi:10.1021/ja046112y es_ES
dc.description.references Tüysüz, H., Lehmann, C. W., Bongard, H., Tesche, B., Schmidt, R., & Schüth, F. (2008). Direct Imaging of Surface Topology and Pore System of Ordered Mesoporous Silica (MCM-41, SBA-15, and KIT-6) and Nanocast Metal Oxides by High Resolution Scanning Electron Microscopy. Journal of the American Chemical Society, 130(34), 11510-11517. doi:10.1021/ja803362s es_ES
dc.description.references Fu, Q. (2003). Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science, 301(5635), 935-938. doi:10.1126/science.1085721 es_ES
dc.description.references Guzman, J., Carrettin, S., & Corma, A. (2005). Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. Journal of the American Chemical Society, 127(10), 3286-3287. doi:10.1021/ja043752s es_ES
dc.description.references Guzman, J., Carrettin, S., Fierro-Gonzalez, J. C., Hao, Y., Gates, B. C., & Corma, A. (2005). CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare-Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angewandte Chemie, 117(30), 4856-4859. doi:10.1002/ange.200500659 es_ES
dc.description.references Guzman, J., Carrettin, S., Fierro-Gonzalez, J. C., Hao, Y., Gates, B. C., & Corma, A. (2005). CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare-Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angewandte Chemie International Edition, 44(30), 4778-4781. doi:10.1002/anie.200500659 es_ES
dc.description.references Estrine, B., Bouquillon, S., Hénin, F., & Muzart, J. (2005). Telomerization of butadiene with pentoses in water: selective etherifications. Green Chem., 7(4), 219-223. doi:10.1039/b418236g es_ES
dc.description.references Corma, A., Iborra, S., Miquel, S., & Primo, J. (1998). Preparation of Long-Chain Alkyl Glucoside Surfactants by One-Step Direct Fischer Glucosidation, and by Transacetalation of Butyl Glucosides, on Beta Zeolite Catalysts. Journal of Catalysis, 180(2), 218-224. doi:10.1006/jcat.1998.2272 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem