Bariwal, J. B., Upadhyay, K. D., Manvar, A. T., Trivedi, J. C., Singh, J. S., Jain, K. S., & Shah, A. K. (2008). 1,5-Benzothiazepine, a versatile pharmacophore: A review. European Journal of Medicinal Chemistry, 43(11), 2279-2290. doi:10.1016/j.ejmech.2008.05.035
Wang, L., Zhang, P., Zhang, X., Zhang, Y., Li, Y., & Wang, Y. (2009). Synthesis and biological evaluation of a novel series of 1,5-benzothiazepine derivatives as potential antimicrobial agents. European Journal of Medicinal Chemistry, 44(7), 2815-2821. doi:10.1016/j.ejmech.2008.12.021
De Sarro, G., Chimirri, A., De Sarro, A., Gitto, R., Grasso, S., Giusti, P., & Chapman, A. G. (1995). GYKI 52466 and related 2,3-benzodiazepines as anticonvulsant agents in DBA/2 mice. European Journal of Pharmacology, 294(2-3), 411-422. doi:10.1016/0014-2999(95)00561-7
[+]
Bariwal, J. B., Upadhyay, K. D., Manvar, A. T., Trivedi, J. C., Singh, J. S., Jain, K. S., & Shah, A. K. (2008). 1,5-Benzothiazepine, a versatile pharmacophore: A review. European Journal of Medicinal Chemistry, 43(11), 2279-2290. doi:10.1016/j.ejmech.2008.05.035
Wang, L., Zhang, P., Zhang, X., Zhang, Y., Li, Y., & Wang, Y. (2009). Synthesis and biological evaluation of a novel series of 1,5-benzothiazepine derivatives as potential antimicrobial agents. European Journal of Medicinal Chemistry, 44(7), 2815-2821. doi:10.1016/j.ejmech.2008.12.021
De Sarro, G., Chimirri, A., De Sarro, A., Gitto, R., Grasso, S., Giusti, P., & Chapman, A. G. (1995). GYKI 52466 and related 2,3-benzodiazepines as anticonvulsant agents in DBA/2 mice. European Journal of Pharmacology, 294(2-3), 411-422. doi:10.1016/0014-2999(95)00561-7
Ansari, F. L., Kalsoom, S., Zaheer-ul-Haq, Ali, Z., & Jabeen, F. (2011). In silico studies on 2,3-dihydro-1,5-benzothiazepines as cholinesterase inhibitors. Medicinal Chemistry Research, 21(9), 2329-2339. doi:10.1007/s00044-011-9754-6
N. K. Ahmed 1991
Org. Chem. Int. 2013
Pant, S., Singhal, B., Upreti, M., & Pant, U. (1998). Syntheses of 1,5-Benzothiazepines. Part 20. Syntheses of 8-Substituted-2,5-dihydro-2-(4-N-dimethylaminophenyl)-4-(4-methoxyphenyl)-1,5-benzothiazepines. Molecules, 3(8), 159-163. doi:10.3390/30600159
Micheli, F., Degiorgis, F., Feriani, A., Paio, A., Pozzan, A., Zarantonello, P., & Seneci, P. (2001). A Combinatorial Approach to [1,5]Benzothiazepine Derivatives as Potential Antibacterial Agents. Journal of Combinatorial Chemistry, 3(2), 224-228. doi:10.1021/cc0000949
Pan, X.-Q., Zou, J.-P., Huang, Z.-H., & Zhang, W. (2008). Ga(OTf)3-promoted condensation reactions for 1,5-benzodiazepines and 1,5-benzothiazepines. Tetrahedron Letters, 49(36), 5302-5308. doi:10.1016/j.tetlet.2008.06.082
Kodomari, M., Noguchi, T., & Aoyama, T. (2004). Solvent‐Free Synthesis of 1,5‐Benzothiazepines and Benzodiazepines on Inorganic Supports. Synthetic Communications, 34(10), 1783-1790. doi:10.1081/scc-120034159
Arya, K., & Dandia, A. (2008). The expedient synthesis of 1,5-benzothiazepines as a family of cytotoxic drugs. Bioorganic & Medicinal Chemistry Letters, 18(1), 114-119. doi:10.1016/j.bmcl.2007.11.002
Dandia, A., Sati, M., & Loupy, A. (2002). Dry-media one-pot syntheses of fluorinated-2,3-dihydro-1,5-benzothiazepines under microwave activation. Green Chemistry, 4(6), 599-602. doi:10.1039/b207004a
Khatik, G. L., Sharma, G., Kumar, R., & Chakraborti, A. K. (2007). Scope and limitations of HClO4–SiO2 as an extremely efficient, inexpensive, and reusable catalyst for chemoselective carbon–sulfur bond formation. Tetrahedron, 63(5), 1200-1210. doi:10.1016/j.tet.2006.11.050
Sharma, G., Kumar, R., & Chakraborti, A. K. (2008). Fluoroboric acid adsorbed on silica-gel (HBF4–SiO2) as a new, highly efficient and reusable heterogeneous catalyst for thia-Michael addition to α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 49(27), 4272-4275. doi:10.1016/j.tetlet.2008.04.144
Sheldon, R. A. (1996). Selective catalytic synthesis of fine chemicals: opportunities and trends. Journal of Molecular Catalysis A: Chemical, 107(1-3), 75-83. doi:10.1016/1381-1169(95)00229-4
Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652
RODRIGUEZ, I., CLIMENT, M., IBORRA, S., FORNES, V., & CORMA, A. (2000). Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 192(2), 441-447. doi:10.1006/jcat.2000.2861
Stephens, W., & Field, L. (1959). Notes. A Seven-Membered Heterocycle from o-Aminobenzenethiol and Chalcone. The Journal of Organic Chemistry, 24(10), 1576-1576. doi:10.1021/jo01092a610
Baldwin, J. E. (1976). Rules for ring closure. Journal of the Chemical Society, Chemical Communications, (18), 734. doi:10.1039/c39760000734
Prakash, O., Kumar, A., Sadana, A., Prakash, R., Singh, S. P., Claramunt, R. M., … Elguero, J. (2005). Study of the reaction of chalcone analogs of dehydroacetic acid and o-aminothiophenol: synthesis and structure of 1,5-benzothiazepines and 1,4-benzothiazines. Tetrahedron, 61(27), 6642-6651. doi:10.1016/j.tet.2005.03.035
Ried, W., & Marx, W. (1957). Über heterocyclische Siebenringsysteme, VIII. Synthesen Kondensierter 7-Gliedriger Heterocyclen mit 1 Stickstoff- und 1 Schwefelatom. Chemische Berichte, 90(11), 2683-2687. doi:10.1002/cber.19570901139
Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Catalysis Letters, 79(1/4), 157-163. doi:10.1023/a:1015364526587
Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084
José Climent, M., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2(1), 16-58. doi:10.1039/c1ra00807b
Climent, M. J., Corma, A., Iborra, S., & Primo, J. (1995). Base Catalysis for Fine Chemicals Production: Claisen-Schmidt Condensation on Zeolites and Hydrotalcites for the Production of Chalcones and Flavanones of Pharmaceutical Interest. Journal of Catalysis, 151(1), 60-66. doi:10.1006/jcat.1995.1008
CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027
Climent, M. ., Corma, A., Iborra, S., & Velty, A. (2004). Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. Journal of Catalysis, 221(2), 474-482. doi:10.1016/j.jcat.2003.09.012
Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592
Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145
[-]