- -

Solid Catalysts for Multistep Reactions: One- Pot Synthesis of 2,3-Dihydro-1,5-benzothiazepines with Solid Acid and Base Catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solid Catalysts for Multistep Reactions: One- Pot Synthesis of 2,3-Dihydro-1,5-benzothiazepines with Solid Acid and Base Catalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Climent Olmedo, María José es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Iborra Chornet, Sara es_ES
dc.contributor.author Martí Montaner, Laura es_ES
dc.date.accessioned 2016-03-30T09:12:55Z
dc.date.issued 2014-04
dc.identifier.issn 1864-5631
dc.identifier.uri http://hdl.handle.net/10251/62078
dc.description.abstract 1,5-Benzothiazepines derivatives were obtained first by starting from 1,3-diphenylpropenone derivatives (chalcones) and 2-aminothiophenol by using aluminosilicate solid catalysts. However, diffusional limitations and the strong adsorption of products on the catalyst are deleterious for catalyst activity and life. Then a structured amorphous mesoporous catalyst with large pores and mild acidity that works at higher temperatures allowed us to obtain high conversions (99%) and selectivities (98%) of the desired product. A one-pot synthesis of 1,5-benzothiazepines that starts from benzaldehyde, acetophenone, and 2-aminothiophenol with 95% yield was performed by combining optimized solid base and acid catalysts in batch mode as well as in a continuous-flow reactor system. Much better conversion and selectivity as well as process intensification has been achieved with the structured mesoporous materials by avoiding intermediate and final neutralization and purification steps required in the synthesis reported previously that uses homogeneous catalysts. es_ES
dc.description.sponsorship The authors acknowledge the Spanish Ministry of Education and Science for financial support in the project Consolider-Ingenio 2010 and CTQ-2011-27550. L. M. thanks the Spanish Ministry of Education and Science for a Jae-Predoc grant, co-financed by the European Social Fund Plan 2007-2013. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemSusChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject cyclization es_ES
dc.subject heterocycles es_ES
dc.subject heterogeneous catalysis es_ES
dc.subject mesoporous materials es_ES
dc.subject multicomponent reactions es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Solid Catalysts for Multistep Reactions: One- Pot Synthesis of 2,3-Dihydro-1,5-benzothiazepines with Solid Acid and Base Catalysts es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cssc.201301064
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S.; Martí Montaner, L. (2014). Solid Catalysts for Multistep Reactions: One- Pot Synthesis of 2,3-Dihydro-1,5-benzothiazepines with Solid Acid and Base Catalysts. ChemSusChem. 7(4):1177-1185. https://doi.org/10.1002/cssc.201301064 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 1177 es_ES
dc.description.upvformatpfin 1185 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 281669 es_ES
dc.identifier.eissn 1864-564X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Bariwal, J. B., Upadhyay, K. D., Manvar, A. T., Trivedi, J. C., Singh, J. S., Jain, K. S., & Shah, A. K. (2008). 1,5-Benzothiazepine, a versatile pharmacophore: A review. European Journal of Medicinal Chemistry, 43(11), 2279-2290. doi:10.1016/j.ejmech.2008.05.035 es_ES
dc.description.references Wang, L., Zhang, P., Zhang, X., Zhang, Y., Li, Y., & Wang, Y. (2009). Synthesis and biological evaluation of a novel series of 1,5-benzothiazepine derivatives as potential antimicrobial agents. European Journal of Medicinal Chemistry, 44(7), 2815-2821. doi:10.1016/j.ejmech.2008.12.021 es_ES
dc.description.references De Sarro, G., Chimirri, A., De Sarro, A., Gitto, R., Grasso, S., Giusti, P., & Chapman, A. G. (1995). GYKI 52466 and related 2,3-benzodiazepines as anticonvulsant agents in DBA/2 mice. European Journal of Pharmacology, 294(2-3), 411-422. doi:10.1016/0014-2999(95)00561-7 es_ES
dc.description.references Ansari, F. L., Kalsoom, S., Zaheer-ul-Haq, Ali, Z., & Jabeen, F. (2011). In silico studies on 2,3-dihydro-1,5-benzothiazepines as cholinesterase inhibitors. Medicinal Chemistry Research, 21(9), 2329-2339. doi:10.1007/s00044-011-9754-6 es_ES
dc.description.references N. K. Ahmed 1991 es_ES
dc.description.references Org. Chem. Int. 2013 es_ES
dc.description.references Pant, S., Singhal, B., Upreti, M., & Pant, U. (1998). Syntheses of 1,5-Benzothiazepines. Part 20. Syntheses of 8-Substituted-2,5-dihydro-2-(4-N-dimethylaminophenyl)-4-(4-methoxyphenyl)-1,5-benzothiazepines. Molecules, 3(8), 159-163. doi:10.3390/30600159 es_ES
dc.description.references Micheli, F., Degiorgis, F., Feriani, A., Paio, A., Pozzan, A., Zarantonello, P., & Seneci, P. (2001). A Combinatorial Approach to [1,5]Benzothiazepine Derivatives as Potential Antibacterial Agents. Journal of Combinatorial Chemistry, 3(2), 224-228. doi:10.1021/cc0000949 es_ES
dc.description.references Pan, X.-Q., Zou, J.-P., Huang, Z.-H., & Zhang, W. (2008). Ga(OTf)3-promoted condensation reactions for 1,5-benzodiazepines and 1,5-benzothiazepines. Tetrahedron Letters, 49(36), 5302-5308. doi:10.1016/j.tetlet.2008.06.082 es_ES
dc.description.references Kodomari, M., Noguchi, T., & Aoyama, T. (2004). Solvent‐Free Synthesis of 1,5‐Benzothiazepines and Benzodiazepines on Inorganic Supports. Synthetic Communications, 34(10), 1783-1790. doi:10.1081/scc-120034159 es_ES
dc.description.references Arya, K., & Dandia, A. (2008). The expedient synthesis of 1,5-benzothiazepines as a family of cytotoxic drugs. Bioorganic & Medicinal Chemistry Letters, 18(1), 114-119. doi:10.1016/j.bmcl.2007.11.002 es_ES
dc.description.references Dandia, A., Sati, M., & Loupy, A. (2002). Dry-media one-pot syntheses of fluorinated-2,3-dihydro-1,5-benzothiazepines under microwave activation. Green Chemistry, 4(6), 599-602. doi:10.1039/b207004a es_ES
dc.description.references Khatik, G. L., Sharma, G., Kumar, R., & Chakraborti, A. K. (2007). Scope and limitations of HClO4–SiO2 as an extremely efficient, inexpensive, and reusable catalyst for chemoselective carbon–sulfur bond formation. Tetrahedron, 63(5), 1200-1210. doi:10.1016/j.tet.2006.11.050 es_ES
dc.description.references Sharma, G., Kumar, R., & Chakraborti, A. K. (2008). Fluoroboric acid adsorbed on silica-gel (HBF4–SiO2) as a new, highly efficient and reusable heterogeneous catalyst for thia-Michael addition to α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 49(27), 4272-4275. doi:10.1016/j.tetlet.2008.04.144 es_ES
dc.description.references Sheldon, R. A. (1996). Selective catalytic synthesis of fine chemicals: opportunities and trends. Journal of Molecular Catalysis A: Chemical, 107(1-3), 75-83. doi:10.1016/1381-1169(95)00229-4 es_ES
dc.description.references Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652 es_ES
dc.description.references RODRIGUEZ, I., CLIMENT, M., IBORRA, S., FORNES, V., & CORMA, A. (2000). Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 192(2), 441-447. doi:10.1006/jcat.2000.2861 es_ES
dc.description.references Stephens, W., & Field, L. (1959). Notes. A Seven-Membered Heterocycle from o-Aminobenzenethiol and Chalcone. The Journal of Organic Chemistry, 24(10), 1576-1576. doi:10.1021/jo01092a610 es_ES
dc.description.references Baldwin, J. E. (1976). Rules for ring closure. Journal of the Chemical Society, Chemical Communications, (18), 734. doi:10.1039/c39760000734 es_ES
dc.description.references Prakash, O., Kumar, A., Sadana, A., Prakash, R., Singh, S. P., Claramunt, R. M., … Elguero, J. (2005). Study of the reaction of chalcone analogs of dehydroacetic acid and o-aminothiophenol: synthesis and structure of 1,5-benzothiazepines and 1,4-benzothiazines. Tetrahedron, 61(27), 6642-6651. doi:10.1016/j.tet.2005.03.035 es_ES
dc.description.references Ried, W., & Marx, W. (1957). Über heterocyclische Siebenringsysteme, VIII. Synthesen Kondensierter 7-Gliedriger Heterocyclen mit 1 Stickstoff- und 1 Schwefelatom. Chemische Berichte, 90(11), 2683-2687. doi:10.1002/cber.19570901139 es_ES
dc.description.references Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Catalysis Letters, 79(1/4), 157-163. doi:10.1023/a:1015364526587 es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 es_ES
dc.description.references José Climent, M., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2(1), 16-58. doi:10.1039/c1ra00807b es_ES
dc.description.references Climent, M. J., Corma, A., Iborra, S., & Primo, J. (1995). Base Catalysis for Fine Chemicals Production: Claisen-Schmidt Condensation on Zeolites and Hydrotalcites for the Production of Chalcones and Flavanones of Pharmaceutical Interest. Journal of Catalysis, 151(1), 60-66. doi:10.1006/jcat.1995.1008 es_ES
dc.description.references CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027 es_ES
dc.description.references Climent, M. ., Corma, A., Iborra, S., & Velty, A. (2004). Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. Journal of Catalysis, 221(2), 474-482. doi:10.1016/j.jcat.2003.09.012 es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem