- -

Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route

Mostrar el registro completo del ítem

Mellado Romero, AM.; Catalan, C.; Bouzón, N.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Paya Bernabeu, JJ. (2014). Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Advances. 4(45):23846-23852. https://doi.org/10.1039/C4RA03375B

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62232

Ficheros en el ítem

Metadatos del ítem

Título: Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route
Autor: Mellado Romero, Ana María Catalan, C Bouzón, N. Borrachero Rosado, María Victoria Monzó Balbuena, José Mª Paya Bernabeu, Jorge Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Fecha difusión:
Resumen:
[EN] CO2 emissions associated with geopolymeric mortar prepared using spent fluid catalytic cracking catalyst (FCC) were compared to those calculated for plain ordinary Portland cement (OPC) mortar. Commercial waterglass ...[+]
Palabras clave: Catalyst residue FCC , Green chemistry , Concrete , Binders , Technology
Derechos de uso: Reserva de todos los derechos
Fuente:
RSC Advances. (issn: 2046-2069 )
DOI: 10.1039/C4RA03375B
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c4ra03375b
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BIA2011-26947/ES/REUTILIZACION DE RESIDUOS CERAMICOS Y DE DEMOLICION EN LA PREPARACION DE NUEVOS MATERIALES GEOPOLIMERICOS/
info:eu-repo/grantAgreement/GVA//GV%2F3018%2F2009/
Agradecimientos:
The authors are grateful to the Spanish Ministry of Economy and Competitiveness (Project GEOCEDEM BIA 2011-26947), and to Generalitat Valenciana (Project 3018/2009) and 'Centro de Cooperacion al Desarrollo' of the Universitat ...[+]
Tipo: Artículo

References

Phair, J. W. (2006). Green chemistry for sustainable cement production and use. Green Chemistry, 8(9), 763. doi:10.1039/b603997a

Parvulescu, A., Rossi, M., Pina, C. D., Ciriminna, R., & Pagliaro, M. (2011). Investigation of glycerol polymerization in the clinker grinding process. Green Chem., 13(1), 143-148. doi:10.1039/c0gc00107d

Mymrin, V., de Araújo Ponte, H., Ferreira Lopes, O., & Vazquez Vaamonde, A. (2003). Environment-friendly method of high alkaline bauxite’s Red Mud and Ferrous Slag utilization as an example of green chemistry. Green Chem., 5(3), 357-360. doi:10.1039/b300495n [+]
Phair, J. W. (2006). Green chemistry for sustainable cement production and use. Green Chemistry, 8(9), 763. doi:10.1039/b603997a

Parvulescu, A., Rossi, M., Pina, C. D., Ciriminna, R., & Pagliaro, M. (2011). Investigation of glycerol polymerization in the clinker grinding process. Green Chem., 13(1), 143-148. doi:10.1039/c0gc00107d

Mymrin, V., de Araújo Ponte, H., Ferreira Lopes, O., & Vazquez Vaamonde, A. (2003). Environment-friendly method of high alkaline bauxite’s Red Mud and Ferrous Slag utilization as an example of green chemistry. Green Chem., 5(3), 357-360. doi:10.1039/b300495n

Fernández Bertos, M., Li, X., Simons, S. J. R., Hills, C. D., & Carey, P. J. (2004). Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2. Green Chem., 6(8), 428-436. doi:10.1039/b401872a

J. L. Provis and J. S. J.van Deventer, Geopolymers. Structure, processing, properties and industrial applications, Woodhead Publishing Limited and CRC Press LLC, UK, 2009

F. Pacheco-Torgal and S.Jalali, Eco-efficient Construction and Building Materials, Springer, London, 2011

Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Construction and Building Materials, 22(7), 1305-1314. doi:10.1016/j.conbuildmat.2007.10.015

Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Construction and Building Materials, 22(7), 1315-1322. doi:10.1016/j.conbuildmat.2007.03.019

Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261-1277. doi:10.1016/j.mineng.2007.07.011

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2006). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917-2933. doi:10.1007/s10853-006-0637-z

Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50-52. doi:10.1016/j.matlet.2012.04.051

Rodríguez, E. D., Bernal, S. A., Provis, J. L., Gehman, J. D., Monzó, J. M., Payá, J., & Borrachero, M. V. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 109, 493-502. doi:10.1016/j.fuel.2013.02.053

Tashima, M. M., Soriano, L., Monzó, J., Borrachero, M. V., & Payá, J. (2013). Novel geopolymeric material cured at room temperature. Advances in Applied Ceramics, 112(4), 179-183. doi:10.1179/1743676112y.0000000056

Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2013). Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 108, 833-839. doi:10.1016/j.fuel.2013.02.052

Duxson, P., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590-1597. doi:10.1016/j.cemconres.2007.08.018

Habert, G., d’ Espinose de Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production, 19(11), 1229-1238. doi:10.1016/j.jclepro.2011.03.012

Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125-130. doi:10.1016/j.conbuildmat.2013.01.023

M. Weil , K.Dombroswski and A.Buchwald, in Geopolymers. Structure, processing, properties and industrial applications, ed. J. L. Provis and J. S. J. van Deventer, Woodhead Publishing Limited and CRC Press LLC, UK, 2009, pp. 194–210

Salas, A., Delvasto, S., de Gutierrez, R. M., & Lange, D. (2009). Comparison of two processes for treating rice husk ash for use in high performance concrete. Cement and Concrete Research, 39(9), 773-778. doi:10.1016/j.cemconres.2009.05.006

Payá, J., Monzó, J., Borrachero, M. ., Mellado, A., & Ordoñez, L. . (2001). Determination of amorphous silica in rice husk ash by a rapid analytical method. Cement and Concrete Research, 31(2), 227-231. doi:10.1016/s0008-8846(00)00466-x

J. Bejarano , C.Garzón, R.Mejía de Gutiérrez, S.Delvasto and M.Gordillo, in II Simposio Aprovechamiento de residuos agro-industriales como fuente sostenible de materiales de construcción, Valencia, Spain, 2010, pp. 409–418

Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001

IPCC , Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Greenhouse Gas Inventory Reference Manual, Workbook, 1997, vol. 2

V. Årskog , S.Fossdal and O. E.Gjørv, in Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, 2004, pp. 193–200

Peris Mora, E. (2007). Life cycle, sustainability and the transcendent quality of building materials. Building and Environment, 42(3), 1329-1334. doi:10.1016/j.buildenv.2005.11.004

Damineli, B. L., Kemeid, F. M., Aguiar, P. S., & John, V. M. (2010). Measuring the eco-efficiency of cement use. Cement and Concrete Composites, 32(8), 555-562. doi:10.1016/j.cemconcomp.2010.07.009

J. Davidovits , in Geopolymer, Green Chemistry and Sustainable Development Solutions World Congress Proc., 2005, pp. 9–15

McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9-10), 1080-1090. doi:10.1016/j.jclepro.2011.02.010

IDAE Instituto para la Diversificación y Ahorro de la Energía, http://www.idae.es/index.php, Ministerio de Industria, Energía y Turismo, Secretaría de Estado de Energía, Madrid, España

PAS 2050 , Specification for the assessment of the life cycle greenhouse gas emissions of goods and services, British Standards Institution, UK, 2011

Yang, K.-H., Song, J.-K., & Song, K.-I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265-272. doi:10.1016/j.jclepro.2012.08.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem