- -

Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mellado Romero, Ana María es_ES
dc.contributor.author Catalan, C es_ES
dc.contributor.author Bouzón, N. es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.date.accessioned 2016-04-05T11:46:06Z
dc.date.available 2016-04-05T11:46:06Z
dc.date.issued 2014
dc.identifier.issn 2046-2069
dc.identifier.uri http://hdl.handle.net/10251/62232
dc.description.abstract [EN] CO2 emissions associated with geopolymeric mortar prepared using spent fluid catalytic cracking catalyst (FCC) were compared to those calculated for plain ordinary Portland cement (OPC) mortar. Commercial waterglass used for preparing the alkaline activating solution for geopolymeric mortar was the main contributing component related to CO2 emission. An alternative route for formulating alkaline activating solution in the preparation of the geopolymeric binder was proposed: refluxing of rice husk ash (RHA) in NaOH solution. Geopolymeric mortar using rice hull ash-derived waterglass led to reduced CO2 emission by 63% compared to the OPC mortar. The new alternative route led to a 50% reduction in CO2 emission compared to geopolymer prepared with commercial waterglass. Replacement of commercial waterglass by rice hull ash- derived waterglass in the preparation of the geopolymer did not cause a significant decrease in the mechanical strength of the mortar. CO2 intensity performance indicators (Ci) for geopolymeric mortars were lower than that found for OPC mortar, indicating that the new route for activating solution led to the lowest C-i value es_ES
dc.description.sponsorship The authors are grateful to the Spanish Ministry of Economy and Competitiveness (Project GEOCEDEM BIA 2011-26947), and to Generalitat Valenciana (Project 3018/2009) and 'Centro de Cooperacion al Desarrollo' of the Universitat Politecnica de Valencia (ADSIDEO COOPERACIO, Project COMBURES) for supporting this study, and to DACSA S. A. for supplying RHA samples.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof RSC Advances es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Catalyst residue FCC es_ES
dc.subject Green chemistry es_ES
dc.subject Concrete es_ES
dc.subject Binders es_ES
dc.subject Technology es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C4RA03375B
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIA2011-26947/ES/REUTILIZACION DE RESIDUOS CERAMICOS Y DE DEMOLICION EN LA PREPARACION DE NUEVOS MATERIALES GEOPOLIMERICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F3018%2F2009/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Mellado Romero, AM.; Catalan, C.; Bouzón, N.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Paya Bernabeu, JJ. (2014). Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Advances. 4(45):23846-23852. https://doi.org/10.1039/C4RA03375B es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c4ra03375b es_ES
dc.description.upvformatpinicio 23846 es_ES
dc.description.upvformatpfin 23852 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 45 es_ES
dc.relation.senia 283228 es_ES
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Phair, J. W. (2006). Green chemistry for sustainable cement production and use. Green Chemistry, 8(9), 763. doi:10.1039/b603997a es_ES
dc.description.references Parvulescu, A., Rossi, M., Pina, C. D., Ciriminna, R., & Pagliaro, M. (2011). Investigation of glycerol polymerization in the clinker grinding process. Green Chem., 13(1), 143-148. doi:10.1039/c0gc00107d es_ES
dc.description.references Mymrin, V., de Araújo Ponte, H., Ferreira Lopes, O., & Vazquez Vaamonde, A. (2003). Environment-friendly method of high alkaline bauxite’s Red Mud and Ferrous Slag utilization as an example of green chemistry. Green Chem., 5(3), 357-360. doi:10.1039/b300495n es_ES
dc.description.references Fernández Bertos, M., Li, X., Simons, S. J. R., Hills, C. D., & Carey, P. J. (2004). Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2. Green Chem., 6(8), 428-436. doi:10.1039/b401872a es_ES
dc.description.references J. L. Provis and J. S. J.van Deventer, Geopolymers. Structure, processing, properties and industrial applications, Woodhead Publishing Limited and CRC Press LLC, UK, 2009 es_ES
dc.description.references F. Pacheco-Torgal and S.Jalali, Eco-efficient Construction and Building Materials, Springer, London, 2011 es_ES
dc.description.references Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Construction and Building Materials, 22(7), 1305-1314. doi:10.1016/j.conbuildmat.2007.10.015 es_ES
dc.description.references Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Construction and Building Materials, 22(7), 1315-1322. doi:10.1016/j.conbuildmat.2007.03.019 es_ES
dc.description.references Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261-1277. doi:10.1016/j.mineng.2007.07.011 es_ES
dc.description.references Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2006). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917-2933. doi:10.1007/s10853-006-0637-z es_ES
dc.description.references Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50-52. doi:10.1016/j.matlet.2012.04.051 es_ES
dc.description.references Rodríguez, E. D., Bernal, S. A., Provis, J. L., Gehman, J. D., Monzó, J. M., Payá, J., & Borrachero, M. V. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 109, 493-502. doi:10.1016/j.fuel.2013.02.053 es_ES
dc.description.references Tashima, M. M., Soriano, L., Monzó, J., Borrachero, M. V., & Payá, J. (2013). Novel geopolymeric material cured at room temperature. Advances in Applied Ceramics, 112(4), 179-183. doi:10.1179/1743676112y.0000000056 es_ES
dc.description.references Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2013). Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 108, 833-839. doi:10.1016/j.fuel.2013.02.052 es_ES
dc.description.references Duxson, P., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590-1597. doi:10.1016/j.cemconres.2007.08.018 es_ES
dc.description.references Habert, G., d’ Espinose de Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production, 19(11), 1229-1238. doi:10.1016/j.jclepro.2011.03.012 es_ES
dc.description.references Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125-130. doi:10.1016/j.conbuildmat.2013.01.023 es_ES
dc.description.references M. Weil , K.Dombroswski and A.Buchwald, in Geopolymers. Structure, processing, properties and industrial applications, ed. J. L. Provis and J. S. J. van Deventer, Woodhead Publishing Limited and CRC Press LLC, UK, 2009, pp. 194–210 es_ES
dc.description.references Salas, A., Delvasto, S., de Gutierrez, R. M., & Lange, D. (2009). Comparison of two processes for treating rice husk ash for use in high performance concrete. Cement and Concrete Research, 39(9), 773-778. doi:10.1016/j.cemconres.2009.05.006 es_ES
dc.description.references Payá, J., Monzó, J., Borrachero, M. ., Mellado, A., & Ordoñez, L. . (2001). Determination of amorphous silica in rice husk ash by a rapid analytical method. Cement and Concrete Research, 31(2), 227-231. doi:10.1016/s0008-8846(00)00466-x es_ES
dc.description.references J. Bejarano , C.Garzón, R.Mejía de Gutiérrez, S.Delvasto and M.Gordillo, in II Simposio Aprovechamiento de residuos agro-industriales como fuente sostenible de materiales de construcción, Valencia, Spain, 2010, pp. 409–418 es_ES
dc.description.references Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001 es_ES
dc.description.references IPCC , Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Greenhouse Gas Inventory Reference Manual, Workbook, 1997, vol. 2 es_ES
dc.description.references V. Årskog , S.Fossdal and O. E.Gjørv, in Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, 2004, pp. 193–200 es_ES
dc.description.references Peris Mora, E. (2007). Life cycle, sustainability and the transcendent quality of building materials. Building and Environment, 42(3), 1329-1334. doi:10.1016/j.buildenv.2005.11.004 es_ES
dc.description.references Damineli, B. L., Kemeid, F. M., Aguiar, P. S., & John, V. M. (2010). Measuring the eco-efficiency of cement use. Cement and Concrete Composites, 32(8), 555-562. doi:10.1016/j.cemconcomp.2010.07.009 es_ES
dc.description.references J. Davidovits , in Geopolymer, Green Chemistry and Sustainable Development Solutions World Congress Proc., 2005, pp. 9–15 es_ES
dc.description.references McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9-10), 1080-1090. doi:10.1016/j.jclepro.2011.02.010 es_ES
dc.description.references IDAE Instituto para la Diversificación y Ahorro de la Energía, http://www.idae.es/index.php, Ministerio de Industria, Energía y Turismo, Secretaría de Estado de Energía, Madrid, España es_ES
dc.description.references PAS 2050 , Specification for the assessment of the life cycle greenhouse gas emissions of goods and services, British Standards Institution, UK, 2011 es_ES
dc.description.references Yang, K.-H., Song, J.-K., & Song, K.-I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265-272. doi:10.1016/j.jclepro.2012.08.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem