Mostrar el registro sencillo del ítem
dc.contributor.author | Mellado Romero, Ana María | es_ES |
dc.contributor.author | Catalan, C | es_ES |
dc.contributor.author | Bouzón, N. | es_ES |
dc.contributor.author | Borrachero Rosado, María Victoria | es_ES |
dc.contributor.author | Monzó Balbuena, José Mª | es_ES |
dc.contributor.author | Paya Bernabeu, Jorge Juan | es_ES |
dc.date.accessioned | 2016-04-05T11:46:06Z | |
dc.date.available | 2016-04-05T11:46:06Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 2046-2069 | |
dc.identifier.uri | http://hdl.handle.net/10251/62232 | |
dc.description.abstract | [EN] CO2 emissions associated with geopolymeric mortar prepared using spent fluid catalytic cracking catalyst (FCC) were compared to those calculated for plain ordinary Portland cement (OPC) mortar. Commercial waterglass used for preparing the alkaline activating solution for geopolymeric mortar was the main contributing component related to CO2 emission. An alternative route for formulating alkaline activating solution in the preparation of the geopolymeric binder was proposed: refluxing of rice husk ash (RHA) in NaOH solution. Geopolymeric mortar using rice hull ash-derived waterglass led to reduced CO2 emission by 63% compared to the OPC mortar. The new alternative route led to a 50% reduction in CO2 emission compared to geopolymer prepared with commercial waterglass. Replacement of commercial waterglass by rice hull ash- derived waterglass in the preparation of the geopolymer did not cause a significant decrease in the mechanical strength of the mortar. CO2 intensity performance indicators (Ci) for geopolymeric mortars were lower than that found for OPC mortar, indicating that the new route for activating solution led to the lowest C-i value | es_ES |
dc.description.sponsorship | The authors are grateful to the Spanish Ministry of Economy and Competitiveness (Project GEOCEDEM BIA 2011-26947), and to Generalitat Valenciana (Project 3018/2009) and 'Centro de Cooperacion al Desarrollo' of the Universitat Politecnica de Valencia (ADSIDEO COOPERACIO, Project COMBURES) for supporting this study, and to DACSA S. A. for supplying RHA samples. | |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | RSC Advances | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Catalyst residue FCC | es_ES |
dc.subject | Green chemistry | es_ES |
dc.subject | Concrete | es_ES |
dc.subject | Binders | es_ES |
dc.subject | Technology | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C4RA03375B | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIA2011-26947/ES/REUTILIZACION DE RESIDUOS CERAMICOS Y DE DEMOLICION EN LA PREPARACION DE NUEVOS MATERIALES GEOPOLIMERICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F3018%2F2009/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Mellado Romero, AM.; Catalan, C.; Bouzón, N.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Paya Bernabeu, JJ. (2014). Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Advances. 4(45):23846-23852. https://doi.org/10.1039/C4RA03375B | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c4ra03375b | es_ES |
dc.description.upvformatpinicio | 23846 | es_ES |
dc.description.upvformatpfin | 23852 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 45 | es_ES |
dc.relation.senia | 283228 | es_ES |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Phair, J. W. (2006). Green chemistry for sustainable cement production and use. Green Chemistry, 8(9), 763. doi:10.1039/b603997a | es_ES |
dc.description.references | Parvulescu, A., Rossi, M., Pina, C. D., Ciriminna, R., & Pagliaro, M. (2011). Investigation of glycerol polymerization in the clinker grinding process. Green Chem., 13(1), 143-148. doi:10.1039/c0gc00107d | es_ES |
dc.description.references | Mymrin, V., de Araújo Ponte, H., Ferreira Lopes, O., & Vazquez Vaamonde, A. (2003). Environment-friendly method of high alkaline bauxite’s Red Mud and Ferrous Slag utilization as an example of green chemistry. Green Chem., 5(3), 357-360. doi:10.1039/b300495n | es_ES |
dc.description.references | Fernández Bertos, M., Li, X., Simons, S. J. R., Hills, C. D., & Carey, P. J. (2004). Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2. Green Chem., 6(8), 428-436. doi:10.1039/b401872a | es_ES |
dc.description.references | J. L. Provis and J. S. J.van Deventer, Geopolymers. Structure, processing, properties and industrial applications, Woodhead Publishing Limited and CRC Press LLC, UK, 2009 | es_ES |
dc.description.references | F. Pacheco-Torgal and S.Jalali, Eco-efficient Construction and Building Materials, Springer, London, 2011 | es_ES |
dc.description.references | Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Construction and Building Materials, 22(7), 1305-1314. doi:10.1016/j.conbuildmat.2007.10.015 | es_ES |
dc.description.references | Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Construction and Building Materials, 22(7), 1315-1322. doi:10.1016/j.conbuildmat.2007.03.019 | es_ES |
dc.description.references | Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261-1277. doi:10.1016/j.mineng.2007.07.011 | es_ES |
dc.description.references | Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2006). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917-2933. doi:10.1007/s10853-006-0637-z | es_ES |
dc.description.references | Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50-52. doi:10.1016/j.matlet.2012.04.051 | es_ES |
dc.description.references | Rodríguez, E. D., Bernal, S. A., Provis, J. L., Gehman, J. D., Monzó, J. M., Payá, J., & Borrachero, M. V. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 109, 493-502. doi:10.1016/j.fuel.2013.02.053 | es_ES |
dc.description.references | Tashima, M. M., Soriano, L., Monzó, J., Borrachero, M. V., & Payá, J. (2013). Novel geopolymeric material cured at room temperature. Advances in Applied Ceramics, 112(4), 179-183. doi:10.1179/1743676112y.0000000056 | es_ES |
dc.description.references | Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2013). Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 108, 833-839. doi:10.1016/j.fuel.2013.02.052 | es_ES |
dc.description.references | Duxson, P., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590-1597. doi:10.1016/j.cemconres.2007.08.018 | es_ES |
dc.description.references | Habert, G., d’ Espinose de Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production, 19(11), 1229-1238. doi:10.1016/j.jclepro.2011.03.012 | es_ES |
dc.description.references | Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125-130. doi:10.1016/j.conbuildmat.2013.01.023 | es_ES |
dc.description.references | M. Weil , K.Dombroswski and A.Buchwald, in Geopolymers. Structure, processing, properties and industrial applications, ed. J. L. Provis and J. S. J. van Deventer, Woodhead Publishing Limited and CRC Press LLC, UK, 2009, pp. 194–210 | es_ES |
dc.description.references | Salas, A., Delvasto, S., de Gutierrez, R. M., & Lange, D. (2009). Comparison of two processes for treating rice husk ash for use in high performance concrete. Cement and Concrete Research, 39(9), 773-778. doi:10.1016/j.cemconres.2009.05.006 | es_ES |
dc.description.references | Payá, J., Monzó, J., Borrachero, M. ., Mellado, A., & Ordoñez, L. . (2001). Determination of amorphous silica in rice husk ash by a rapid analytical method. Cement and Concrete Research, 31(2), 227-231. doi:10.1016/s0008-8846(00)00466-x | es_ES |
dc.description.references | J. Bejarano , C.Garzón, R.Mejía de Gutiérrez, S.Delvasto and M.Gordillo, in II Simposio Aprovechamiento de residuos agro-industriales como fuente sostenible de materiales de construcción, Valencia, Spain, 2010, pp. 409–418 | es_ES |
dc.description.references | Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001 | es_ES |
dc.description.references | IPCC , Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Greenhouse Gas Inventory Reference Manual, Workbook, 1997, vol. 2 | es_ES |
dc.description.references | V. Årskog , S.Fossdal and O. E.Gjørv, in Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, 2004, pp. 193–200 | es_ES |
dc.description.references | Peris Mora, E. (2007). Life cycle, sustainability and the transcendent quality of building materials. Building and Environment, 42(3), 1329-1334. doi:10.1016/j.buildenv.2005.11.004 | es_ES |
dc.description.references | Damineli, B. L., Kemeid, F. M., Aguiar, P. S., & John, V. M. (2010). Measuring the eco-efficiency of cement use. Cement and Concrete Composites, 32(8), 555-562. doi:10.1016/j.cemconcomp.2010.07.009 | es_ES |
dc.description.references | J. Davidovits , in Geopolymer, Green Chemistry and Sustainable Development Solutions World Congress Proc., 2005, pp. 9–15 | es_ES |
dc.description.references | McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9-10), 1080-1090. doi:10.1016/j.jclepro.2011.02.010 | es_ES |
dc.description.references | IDAE Instituto para la Diversificación y Ahorro de la Energía, http://www.idae.es/index.php, Ministerio de Industria, Energía y Turismo, Secretaría de Estado de Energía, Madrid, España | es_ES |
dc.description.references | PAS 2050 , Specification for the assessment of the life cycle greenhouse gas emissions of goods and services, British Standards Institution, UK, 2011 | es_ES |
dc.description.references | Yang, K.-H., Song, J.-K., & Song, K.-I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265-272. doi:10.1016/j.jclepro.2012.08.001 | es_ES |