- -

Validation of a FBA model for Pichia pastoris in chemostat cultures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of a FBA model for Pichia pastoris in chemostat cultures

Mostrar el registro completo del ítem

Morales, Y.; Tortajada, M.; Picó Marco, JA.; Vehi, J.; Llaneras, F. (2014). Validation of a FBA model for Pichia pastoris in chemostat cultures. BMC Systems Biology. 8:1-17. https://doi.org/10.1186/s12918-014-0142-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62285

Ficheros en el ítem

Metadatos del ítem

Título: Validation of a FBA model for Pichia pastoris in chemostat cultures
Autor: Morales, Yeimy Tortajada, Marta Picó Marco, Jesús Andrés Vehi, Josep Llaneras, Francisco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
Background: Constraint-based metabolic models and flux balance analysis (FBA) have been extensively used in the last years to investigate the behavior of cells and also as basis for different industrial applications. In ...[+]
Palabras clave: Constraint-based model , Flux balance analysis , Possibilistic metabolic flux analysis , Pichia pastoris
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Systems Biology. (issn: 1752-0509 )
DOI: 10.1186/s12918-014-0142-y
Editorial:
BioMed Central
Versión del editor: http://dx.doi.org/10.1186/s12918-014-0142-y
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-01/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES/
info:eu-repo/grantAgreement/MINECO//DPI2013-46982-C2-2-R/ES/NUEVOS METODOS PARA LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL DOMICILIARIO EN DIABETES TIPO 1/
info:eu-repo/grantAgreement/BIOPOLIS, S.L.//R.C.055%2F12/
info:eu-repo/grantAgreement/UdG//BR2012%2F26/
Agradecimientos:
This research has been partially supported by the Spanish Government (cicyt: DPI 2011-28112-C04-01, DPI 2013-46982-C2-2-R) and Biopolis S.L. (R.C.055/12). Yeimy Morales is grateful for the BR Grant of the University of ...[+]
Tipo: Artículo

References

Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM: Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005, 22: 249-270. 10.1002/yea.1208.

Palsson BO: System Biology, Properties of Reconstructed Networks. 2006, Cambridge University Press, New York USA

Stephanopoulos GN, Aristidou AA, Nielsen J: Metabolic Engineering: Principles and Methodologies. 1998, Academic Press, San Diego, USA: [+]
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM: Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005, 22: 249-270. 10.1002/yea.1208.

Palsson BO: System Biology, Properties of Reconstructed Networks. 2006, Cambridge University Press, New York USA

Stephanopoulos GN, Aristidou AA, Nielsen J: Metabolic Engineering: Principles and Methodologies. 1998, Academic Press, San Diego, USA:

Klamt S, Schuster S, Gilles ED: Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol Bioeng. 2002, 77: 734-775. 10.1002/bit.10153.

Llaneras F, Picó J: Stoichiometric modelling of cell metabolism. J Biosci Bioeng. 2008, 105 (1): 1-11. 10.1263/jbb.105.1.

Orth JD, Thiele I, Palsson BO: What is flux balance analysis?. Nat Biotech. 2010, 28: 245-248. 10.1038/nbt.1614.

Van der Heijden RT, Heijnen JJ, Hellinga C, Romein B, Luyben KC: Linear constraint relations in biochemical reaction systems. I Biotechnol Bioeng. 1994, 43 (1): 3-10. 10.1002/bit.260430103.

Varma A, Palsson BO: Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol. 1994, 12 (10): 994-998. 10.1038/nbt1094-994.

Edwards JS, Covert M, Palsson B: Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol. 2002, 4: 133-140. 10.1046/j.1462-2920.2002.00282.x.

Schuster S, Pfeiffer T, Fell DA: Is maximization of molar yield in metabolic networks favoured by evolution?. J Theor Biol. 2007, 252: 497-504. 10.1016/j.jtbi.2007.12.008.

Ibarra RU, Edwards JS, Palsson BO:Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature. 2002, 420: 186-189. 10.1038/nature01149.

Wintermute EH, Lieberman TD, Silver PA: An objective function exploiting suboptimal solutions in metabolic networks.BMC Syst Biol 2013, 7:98.,

Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007, 3: 1-15. 10.1038/msb4100162.

Ebenhöh O, Heinrich R: Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bull Math Biol. 2001, 63 (1): 21-55. 10.1006/bulm.2000.0197.

Holzhütter HG: The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem. 2004, 271: 2905-2922. 10.1111/j.1432-1033.2004.04213.x.

Bordel S: Experimental evidence suggests the existence of evolutionary conserved global operation principles governing microbial metabolism. Sci Rep. 2013, 3: 1-7. 10.1038/srep03017.

Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U: Multidimensional optimality of microbial metabolism. Science. 2012, 336: 601-604. 10.1126/science.1216882.

Sendín JO, Alonso AA, Banga JR: Multi-Objective Optimization of Biological Networks for Prediction of Intracellular Fluxes. 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB). 2008, Springer, Berlin Heidelberg, 197-205.

Varma A, Boesch BW, Palsson BO: Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol. 1993, 59 (8): 2465-2473.

Edwards J, Ibarra R, Palsson B: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001, 19 (2): 125-130. 10.1038/84379.

Jin Y, Jeffries T: Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng. 2004, 6 (3): 229-238. 10.1016/j.ymben.2003.11.006.

Varma A, Palsson BO: Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol. 1993, 165 (4): 477-502. 10.1006/jtbi.1993.1202.

David H, Åkesson M, Nielsen J: Reconstruction of the central carbon metabolism of Aspergillus niger. Eur J Biochem. 2003, 270 (21): 4243-4253. 10.1046/j.1432-1033.2003.03798.x.

Tortajada M, Llaneras F, Picó J: Validation of a constraint-based model of Pichia pastoris growth under data scarcity. BMC Syst Biol. 2010, 4 (115): 1-11.

Tortajada M, Llaneras F, Ramón D, Picó J: Estimation of recombinant protein production in Pichia pastoris based on a constraint-based model. J Process Control. 2012, 22 (6): 1139-1151. 10.1016/j.jprocont.2012.03.009.

Llaneras F: Interval and Possibilistic Methods for Constraint-Based Metabolic Models. PhD Thesis. 2011, Departamento de Ingeniería de Sistemas y Automática, Universidad Politécnica de Valencia

Lofberg J: YALMIP. A Toolbox for Modeling and Optimization in MATLAB, In Flux-Balance Approach. IEEE International Symposium on Computer Aided Control Systems Design. 2004, IEEE, Taipei, 284-289.

Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D: The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res. 2009, 8 (3): 1380-1392. 10.1021/pr8007623.

Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J: Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials.BMC Syst Biol 2012, 6(1):24.,

Inan M, Meagher MM: Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. J Biosci Bioeng. 2001, 92 (6): 585-589. 10.1016/S1389-1723(01)80321-2.

Zhang W, Bevins MA, Plantz BA, Smith LA, Meagher MM: Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol Bioeng. 2000, 70: 1-8. 10.1002/1097-0290(20001005)70:1<1::AID-BIT1>3.0.CO;2-Y.

Kim S, Warburton S, Boldogh I, Svensson C, Pon L, d’Anjou M, Choi BK: Regulation of alcohol oxidase 1 (AOX1) promoter and peroxisome biogenesis in different fermentation processes in Pichia pastoris. J Biotechnol. 2013, 166 (4): 174-181. 10.1016/j.jbiotec.2013.05.009.

Santos S: Análisis cuantitativo y modelización del metabolismo de la levadura Pichia pastoris. PhD Thesis. 2008, Departamento de Ingeniería Quimica, Universitat Autónoma de Barcelona,

Heyland J, Fu J, Blank LM, Schmid A: Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng. 2011, 108 (8): 1942-1953. 10.1002/bit.23114.

Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattanovich D: Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng. 2008, 100 (1): 177-183. 10.1002/bit.21763.

Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO: Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes. Bioprocess Biosyst Eng. 2005, 27 (6): 399-406. 10.1007/s00449-005-0005-4.

Carnicer M, Baumann K, Töplitz I, Sanchez F, Mattanovich D, Ferrer P, Albiol J: Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels.Microb Cell Fact 2009, 8:65.,

Cereghino GP, Cereghino JL, Ilgen C, Cregg JM: Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol. 2002, 13 (4): 329-332. 10.1016/S0958-1669(02)00330-0.

Baumann K, Carnicer M, Dragosits M, Graf A, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P: A multi-level study of recombinant Pichia pastoris in different oxygen conditions.BMC Syst Biol 2010, 4:141.,

Garcia X, Ferrer P, Montesinos J, Valero F: Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter. Biochem Eng J. 2013, 79: 172-181. 10.1016/j.bej.2013.07.013.

Inan M, Meagher MM: The effect of ethanol and acetate on protein expression in Pichia pastoris. J Biosci Bioeng. 2001, 92 (4): 337-341. 10.1016/S1389-1723(01)80236-X.

Chiruvolu V, Eskridge KM, Cregg JM, Meagher MM: Effects of glycerol concentration and pH on growth of recombinant Pichia pastoris. Appl Biochem Biotechnol. 1998, 75: 163-173. 10.1007/BF02787771.

Solà A, Jouhten P, Maaheimo H, Sánchez-Ferrando F, Szyperski T, Ferrer P: Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology. 2007, 153: 281-290. 10.1099/mic.0.29263-0.

Jordà J, Suarez C, Carnicer M, Pierick A, Heijnen J, Van Gulik W, Ferrer P, Albiol J, Aljoscha W: Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis. BMC Sys Biol. 2013, 7 (17): 2-16.

Solà A: Estudi del metabolisme central del carboni de Pichia pastoris. PhD Thesis. 2004, Escola Tècnica Superior d’Enginyeria, Universitat Autònoma de Barceloana,

Jungo C, Marison I, Stockar U: Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: a quantitative study based on concentration gradients in transient continuous cultures. J Biotechnol. 2007, 128: 824-837. 10.1016/j.jbiotec.2006.12.024.

d’Anjou MC, Daugulis AJ: A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol Bioeng. 2001, 72: 1-11. 10.1002/1097-0290(20010105)72:1<1::AID-BIT1>3.0.CO;2-T.

Zhang WH, Liu CP, Inan M, Meagher MM: Optimization of cell density and dilution rate in Pichia pastoris continuous fermentations for production of recombinant proteins. J Ind Microbiol Biotechnol. 2004, 31: 330-334. 10.1007/s10295-004-0155-4.

Jordà J, de Jesus SS, Peltier S, Ferrer P, Albiol J: Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived 13C-labelling data from proteinogenic amino acids. New Biotecnol. 2014, 31 (1): 120-132. 10.1016/j.nbt.2013.06.007.

Chung B, Selvarasu S, Camattari A, Ryu J, Lee H, Ahn J, Lee D: Research Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement.Microb Cell Fact 2010, 9:50.,

Jungo C, Rerat C, Marison IW, von Stockar U: Quantitative characterization of the regulation of the synthesis of alcohol oxidase and of the expression of recombinant avidin in a Pichia pastoris Mut + strain. Enzyme Microb Technol. 2006, 39: 936-944. 10.1016/j.enzmictec.2006.01.027.

Tortajada M: Process Development for the Obtention and use of Recombinant Glycosidases: Expression, Modelling and Immobilization. PhD Thesis. 2012, Departamento de Ingeniería de Sistemas y Automática, Universidad Politécnica de Valencia

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem