- -

Validation of a FBA model for Pichia pastoris in chemostat cultures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of a FBA model for Pichia pastoris in chemostat cultures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morales, Yeimy es_ES
dc.contributor.author Tortajada, Marta es_ES
dc.contributor.author Picó Marco, Jesús Andrés es_ES
dc.contributor.author Vehi, Josep es_ES
dc.contributor.author Llaneras, Francisco
dc.date.accessioned 2016-04-06T11:12:57Z
dc.date.available 2016-04-06T11:12:57Z
dc.date.issued 2014-12-24
dc.identifier.issn 1752-0509
dc.identifier.uri http://hdl.handle.net/10251/62285
dc.description.abstract Background: Constraint-based metabolic models and flux balance analysis (FBA) have been extensively used in the last years to investigate the behavior of cells and also as basis for different industrial applications. In this context, this work provides a validation of a small-sized FBA model of the yeast Pichia pastoris. Our main objective is testing how accurate is the hypothesis of maximum growth to predict the behavior of P. pastoris in a range of experimental environments. Results: A constraint-based model of P. pastoris was previously validated using metabolic flux analysis (MFA). In this paper we have verified the model ability to predict the cells behavior in different conditions without introducing measurements, experimental parameters, or any additional constraint, just by assuming that cells will make the best use of the available resources to maximize its growth. In particular, we have tested FBA model ability to: (a) predict growth yields over single substrates (glucose, glycerol, and methanol); (b) predict growth rate, substrate uptakes, respiration rates, and by-product formation in scenarios where different substrates are available (glucose, glycerol, methanol, or mixes of methanol and glycerol); (c) predict the different behaviors of P. pastoris cultures in aerobic and hypoxic conditions for each single substrate. In every case, experimental data from literature are used as validation. Conclusions: We conclude that our predictions based on growth maximisation are reasonably accurate, but still far from perfect. The deviations are significant in scenarios where P. pastoris grows on methanol, suggesting that the hypothesis of maximum growth could be not dominating in these situations. However, predictions are much better when glycerol or glucose are used as substrates. In these scenarios, even if our FBA model is small and imposes a strong assumption regarding how cells will regulate their metabolic fluxes, it provides reasonably good predictions in terms of growth, substrate preference, product formation, and respiration rates es_ES
dc.description.sponsorship This research has been partially supported by the Spanish Government (cicyt: DPI 2011-28112-C04-01, DPI 2013-46982-C2-2-R) and Biopolis S.L. (R.C.055/12). Yeimy Morales is grateful for the BR Grant of the University of Girona (BR2012/26). The authors are grateful to the company Biopolis S.L. for his support to this research. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Systems Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Constraint-based model es_ES
dc.subject Flux balance analysis es_ES
dc.subject Possibilistic metabolic flux analysis es_ES
dc.subject Pichia pastoris es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Validation of a FBA model for Pichia pastoris in chemostat cultures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12918-014-0142-y
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-01/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46982-C2-2-R/ES/NUEVOS METODOS PARA LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL DOMICILIARIO EN DIABETES TIPO 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BIOPOLIS, S.L.//R.C.055%2F12/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UdG//BR2012%2F26/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Morales, Y.; Tortajada, M.; Picó Marco, JA.; Vehi, J.; Llaneras, F. (2014). Validation of a FBA model for Pichia pastoris in chemostat cultures. BMC Systems Biology. 8:1-17. https://doi.org/10.1186/s12918-014-0142-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/s12918-014-0142-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.relation.senia 279821 es_ES
dc.identifier.pmid 25539657 en_EN
dc.identifier.pmcid PMC4301075 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat de Girona es_ES
dc.contributor.funder BIOPOLIS, S.L. es_ES
dc.description.references Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM: Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005, 22: 249-270. 10.1002/yea.1208. es_ES
dc.description.references Palsson BO: System Biology, Properties of Reconstructed Networks. 2006, Cambridge University Press, New York USA es_ES
dc.description.references Stephanopoulos GN, Aristidou AA, Nielsen J: Metabolic Engineering: Principles and Methodologies. 1998, Academic Press, San Diego, USA: es_ES
dc.description.references Klamt S, Schuster S, Gilles ED: Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol Bioeng. 2002, 77: 734-775. 10.1002/bit.10153. es_ES
dc.description.references Llaneras F, Picó J: Stoichiometric modelling of cell metabolism. J Biosci Bioeng. 2008, 105 (1): 1-11. 10.1263/jbb.105.1. es_ES
dc.description.references Orth JD, Thiele I, Palsson BO: What is flux balance analysis?. Nat Biotech. 2010, 28: 245-248. 10.1038/nbt.1614. es_ES
dc.description.references Van der Heijden RT, Heijnen JJ, Hellinga C, Romein B, Luyben KC: Linear constraint relations in biochemical reaction systems. I Biotechnol Bioeng. 1994, 43 (1): 3-10. 10.1002/bit.260430103. es_ES
dc.description.references Varma A, Palsson BO: Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol. 1994, 12 (10): 994-998. 10.1038/nbt1094-994. es_ES
dc.description.references Edwards JS, Covert M, Palsson B: Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol. 2002, 4: 133-140. 10.1046/j.1462-2920.2002.00282.x. es_ES
dc.description.references Schuster S, Pfeiffer T, Fell DA: Is maximization of molar yield in metabolic networks favoured by evolution?. J Theor Biol. 2007, 252: 497-504. 10.1016/j.jtbi.2007.12.008. es_ES
dc.description.references Ibarra RU, Edwards JS, Palsson BO:Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature. 2002, 420: 186-189. 10.1038/nature01149. es_ES
dc.description.references Wintermute EH, Lieberman TD, Silver PA: An objective function exploiting suboptimal solutions in metabolic networks.BMC Syst Biol 2013, 7:98., es_ES
dc.description.references Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007, 3: 1-15. 10.1038/msb4100162. es_ES
dc.description.references Ebenhöh O, Heinrich R: Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bull Math Biol. 2001, 63 (1): 21-55. 10.1006/bulm.2000.0197. es_ES
dc.description.references Holzhütter HG: The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem. 2004, 271: 2905-2922. 10.1111/j.1432-1033.2004.04213.x. es_ES
dc.description.references Bordel S: Experimental evidence suggests the existence of evolutionary conserved global operation principles governing microbial metabolism. Sci Rep. 2013, 3: 1-7. 10.1038/srep03017. es_ES
dc.description.references Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U: Multidimensional optimality of microbial metabolism. Science. 2012, 336: 601-604. 10.1126/science.1216882. es_ES
dc.description.references Sendín JO, Alonso AA, Banga JR: Multi-Objective Optimization of Biological Networks for Prediction of Intracellular Fluxes. 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB). 2008, Springer, Berlin Heidelberg, 197-205. es_ES
dc.description.references Varma A, Boesch BW, Palsson BO: Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol. 1993, 59 (8): 2465-2473. es_ES
dc.description.references Edwards J, Ibarra R, Palsson B: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001, 19 (2): 125-130. 10.1038/84379. es_ES
dc.description.references Jin Y, Jeffries T: Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng. 2004, 6 (3): 229-238. 10.1016/j.ymben.2003.11.006. es_ES
dc.description.references Varma A, Palsson BO: Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol. 1993, 165 (4): 477-502. 10.1006/jtbi.1993.1202. es_ES
dc.description.references David H, Åkesson M, Nielsen J: Reconstruction of the central carbon metabolism of Aspergillus niger. Eur J Biochem. 2003, 270 (21): 4243-4253. 10.1046/j.1432-1033.2003.03798.x. es_ES
dc.description.references Tortajada M, Llaneras F, Picó J: Validation of a constraint-based model of Pichia pastoris growth under data scarcity. BMC Syst Biol. 2010, 4 (115): 1-11. es_ES
dc.description.references Tortajada M, Llaneras F, Ramón D, Picó J: Estimation of recombinant protein production in Pichia pastoris based on a constraint-based model. J Process Control. 2012, 22 (6): 1139-1151. 10.1016/j.jprocont.2012.03.009. es_ES
dc.description.references Llaneras F: Interval and Possibilistic Methods for Constraint-Based Metabolic Models. PhD Thesis. 2011, Departamento de Ingeniería de Sistemas y Automática, Universidad Politécnica de Valencia es_ES
dc.description.references Lofberg J: YALMIP. A Toolbox for Modeling and Optimization in MATLAB, In Flux-Balance Approach. IEEE International Symposium on Computer Aided Control Systems Design. 2004, IEEE, Taipei, 284-289. es_ES
dc.description.references Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D: The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res. 2009, 8 (3): 1380-1392. 10.1021/pr8007623. es_ES
dc.description.references Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J: Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials.BMC Syst Biol 2012, 6(1):24., es_ES
dc.description.references Inan M, Meagher MM: Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. J Biosci Bioeng. 2001, 92 (6): 585-589. 10.1016/S1389-1723(01)80321-2. es_ES
dc.description.references Zhang W, Bevins MA, Plantz BA, Smith LA, Meagher MM: Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol Bioeng. 2000, 70: 1-8. 10.1002/1097-0290(20001005)70:1<1::AID-BIT1>3.0.CO;2-Y. es_ES
dc.description.references Kim S, Warburton S, Boldogh I, Svensson C, Pon L, d’Anjou M, Choi BK: Regulation of alcohol oxidase 1 (AOX1) promoter and peroxisome biogenesis in different fermentation processes in Pichia pastoris. J Biotechnol. 2013, 166 (4): 174-181. 10.1016/j.jbiotec.2013.05.009. es_ES
dc.description.references Santos S: Análisis cuantitativo y modelización del metabolismo de la levadura Pichia pastoris. PhD Thesis. 2008, Departamento de Ingeniería Quimica, Universitat Autónoma de Barcelona, es_ES
dc.description.references Heyland J, Fu J, Blank LM, Schmid A: Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng. 2011, 108 (8): 1942-1953. 10.1002/bit.23114. es_ES
dc.description.references Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattanovich D: Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng. 2008, 100 (1): 177-183. 10.1002/bit.21763. es_ES
dc.description.references Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO: Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes. Bioprocess Biosyst Eng. 2005, 27 (6): 399-406. 10.1007/s00449-005-0005-4. es_ES
dc.description.references Carnicer M, Baumann K, Töplitz I, Sanchez F, Mattanovich D, Ferrer P, Albiol J: Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels.Microb Cell Fact 2009, 8:65., es_ES
dc.description.references Cereghino GP, Cereghino JL, Ilgen C, Cregg JM: Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol. 2002, 13 (4): 329-332. 10.1016/S0958-1669(02)00330-0. es_ES
dc.description.references Baumann K, Carnicer M, Dragosits M, Graf A, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P: A multi-level study of recombinant Pichia pastoris in different oxygen conditions.BMC Syst Biol 2010, 4:141., es_ES
dc.description.references Garcia X, Ferrer P, Montesinos J, Valero F: Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter. Biochem Eng J. 2013, 79: 172-181. 10.1016/j.bej.2013.07.013. es_ES
dc.description.references Inan M, Meagher MM: The effect of ethanol and acetate on protein expression in Pichia pastoris. J Biosci Bioeng. 2001, 92 (4): 337-341. 10.1016/S1389-1723(01)80236-X. es_ES
dc.description.references Chiruvolu V, Eskridge KM, Cregg JM, Meagher MM: Effects of glycerol concentration and pH on growth of recombinant Pichia pastoris. Appl Biochem Biotechnol. 1998, 75: 163-173. 10.1007/BF02787771. es_ES
dc.description.references Solà A, Jouhten P, Maaheimo H, Sánchez-Ferrando F, Szyperski T, Ferrer P: Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology. 2007, 153: 281-290. 10.1099/mic.0.29263-0. es_ES
dc.description.references Jordà J, Suarez C, Carnicer M, Pierick A, Heijnen J, Van Gulik W, Ferrer P, Albiol J, Aljoscha W: Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis. BMC Sys Biol. 2013, 7 (17): 2-16. es_ES
dc.description.references Solà A: Estudi del metabolisme central del carboni de Pichia pastoris. PhD Thesis. 2004, Escola Tècnica Superior d’Enginyeria, Universitat Autònoma de Barceloana, es_ES
dc.description.references Jungo C, Marison I, Stockar U: Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: a quantitative study based on concentration gradients in transient continuous cultures. J Biotechnol. 2007, 128: 824-837. 10.1016/j.jbiotec.2006.12.024. es_ES
dc.description.references d’Anjou MC, Daugulis AJ: A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol Bioeng. 2001, 72: 1-11. 10.1002/1097-0290(20010105)72:1<1::AID-BIT1>3.0.CO;2-T. es_ES
dc.description.references Zhang WH, Liu CP, Inan M, Meagher MM: Optimization of cell density and dilution rate in Pichia pastoris continuous fermentations for production of recombinant proteins. J Ind Microbiol Biotechnol. 2004, 31: 330-334. 10.1007/s10295-004-0155-4. es_ES
dc.description.references Jordà J, de Jesus SS, Peltier S, Ferrer P, Albiol J: Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived 13C-labelling data from proteinogenic amino acids. New Biotecnol. 2014, 31 (1): 120-132. 10.1016/j.nbt.2013.06.007. es_ES
dc.description.references Chung B, Selvarasu S, Camattari A, Ryu J, Lee H, Ahn J, Lee D: Research Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement.Microb Cell Fact 2010, 9:50., es_ES
dc.description.references Jungo C, Rerat C, Marison IW, von Stockar U: Quantitative characterization of the regulation of the synthesis of alcohol oxidase and of the expression of recombinant avidin in a Pichia pastoris Mut + strain. Enzyme Microb Technol. 2006, 39: 936-944. 10.1016/j.enzmictec.2006.01.027. es_ES
dc.description.references Tortajada M: Process Development for the Obtention and use of Recombinant Glycosidases: Expression, Modelling and Immobilization. PhD Thesis. 2012, Departamento de Ingeniería de Sistemas y Automática, Universidad Politécnica de Valencia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem