- -

Functional specialization of duplicated AP3-like genes in Medicago truncatula

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Functional specialization of duplicated AP3-like genes in Medicago truncatula

Mostrar el registro completo del ítem

Roque Mesa, EM.; Serwatowska, J.; Rochina Peñalver, MC.; Wen, J.; Mysore, KS.; Yenush, L.; Beltran Porter, JP.... (2013). Functional specialization of duplicated AP3-like genes in Medicago truncatula. The Plant Journal. 73(4):663-675. doi:10.1111/tpj.12068

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62292

Ficheros en el ítem

Metadatos del ítem

Título: Functional specialization of duplicated AP3-like genes in Medicago truncatula
Autor: Roque Mesa, Edelin Marta Serwatowska, Joanna Rochina Peñalver, Mª Cruz Wen, Jiangqi Mysore, Kirankumar S. Yenush, Lynne Beltran Porter, Jose Pio Cañas Clemente, Luís Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
The Bclass of MADS box genes has been studied in a wide range of plant species, but has remained largely uncharacterized in legumes. Here we investigate the evolutionary fate of the duplicated AP3-like genes of a legume ...[+]
Palabras clave: AP3-like genes , MADS box , Legumes , Medicago truncatula , Gene duplication , Sub-functionalization , Evolutionary fate
Derechos de uso: Reserva de todos los derechos
Fuente:
The Plant Journal. (issn: 0960-7412 ) (eissn: 1365-313X )
DOI: 10.1111/tpj.12068
Editorial:
Wiley-Blackwell
Versión del editor: http://dx.doi.org/10.1111/tpj.12068
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//BIO2006-09374/ES/ANALISIS GENETICO Y FUNCIONAL DEL DESARROLLO FLORAL EN MEDICAGO TRUNCATULA/ /
info:eu-repo/grantAgreement/MICINN//BIO2009-08134/ES/Mejora Del Valor Nutritivo De La Alfalfa (Medicago Sativa L.) Mediante Ingenieria Genetica/
Descripción: This is the accepted version of the following article: Roque, E., Serwatowska, J., Cruz Rochina, M., Wen, J., Mysore, K. S., Yenush, L., Beltrán, J. P. and Cañas, L. A. (2013), Functional specialization of duplicated AP3-like genes in Medicago truncatula. Plant J, 73: 663–675 , which has been published in final form at http://dx.doi.org/10.1111/tpj.12068
Agradecimientos:
This work was funded by grants BIO2006-09374 and BIO2009-08134 from the Spanish Ministry of Science and Innovation. We are gratefully to Mario A. Fares and Santiago F. Elena (Instituto de Biologia Molecular y Celular de ...[+]
Tipo: Artículo

References

Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

Aoki, S., Uehara, K., Imafuku, M., Hasebe, M., & Ito, M. (2004). Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. Journal of Plant Research, 117(3). doi:10.1007/s10265-004-0153-7

Baum, D. (2002). Response: Missing links: the genetic architecture of flower and floral diversification. Trends in Plant Science, 7(1), 31-34. doi:10.1016/s1360-1385(01)02181-1 [+]
Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

Aoki, S., Uehara, K., Imafuku, M., Hasebe, M., & Ito, M. (2004). Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. Journal of Plant Research, 117(3). doi:10.1007/s10265-004-0153-7

Baum, D. (2002). Response: Missing links: the genetic architecture of flower and floral diversification. Trends in Plant Science, 7(1), 31-34. doi:10.1016/s1360-1385(01)02181-1

A., B., K., K., A., F., C., V., M.-A., L., H., S., & G., T. (2002). A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Molecular Genetics and Genomics, 266(6), 942-950. doi:10.1007/s00438-001-0615-8

Benlloch, R., d’ Erfurth, I., Ferrandiz, C., Cosson, V., Beltrán, J. P., Cañas, L. A., … Ratet, P. (2006). Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes. Plant Physiology, 142(3), 972-983. doi:10.1104/pp.106.083543

Benlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R. V., … Madueño, F. (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development inMedicago truncatula. The Plant Journal, 60(1), 102-111. doi:10.1111/j.1365-313x.2009.03939.x

Berbel, A., Navarro, C., Ferrándiz, C., Cañas, L. A., Beltrán, J.-P., & Madueño, F. (2005). Functional Conservation of PISTILLATA Activity in a Pea Homolog Lacking the PI Motif. Plant Physiology, 139(1), 174-185. doi:10.1104/pp.104.057687

Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37

Broholm, S. K., Pöllänen, E., Ruokolainen, S., Tähtiharju, S., Kotilainen, M., Albert, V. A., … Teeri, T. H. (2009). Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. Journal of Experimental Botany, 61(1), 75-85. doi:10.1093/jxb/erp279

Cheng, X., Wen, J., Tadege, M., Ratet, P., & Mysore, K. S. (2010). Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Plant Reverse Genetics, 179-190. doi:10.1007/978-1-60761-682-5_13

Coen, E. S., & Meyerowitz, E. M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature, 353(6339), 31-37. doi:10.1038/353031a0

Coronado, C., Zuanazzi, J., Sallaud, C., Quirion, J. C., Esnault, R., Husson, H. P., … Ratet, P. (1995). Alfalfa Root Flavonoid Production Is Nitrogen Regulated. Plant Physiology, 108(2), 533-542. doi:10.1104/pp.108.2.533

Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670

Drea, S., Hileman, L. C., de Martino, G., & Irish, V. F. (2007). Functional analyses of genetic pathways controlling petal specification in poppy. Development, 134(23), 4157-4166. doi:10.1242/dev.013136

D’ Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of theTnt1tobacco retrotransposon in the model legumeMedicago truncatula. The Plant Journal, 34(1), 95-106. doi:10.1046/j.1365-313x.2003.01701.x

Ferr�ndiz, C., Navarro, C., G�mez, M. D., Ca�as, L. A., & Beltr�n, J. P. (1999). Flower development inPisum sativum: From the war of the whorls to the battle of the common primordia. Developmental Genetics, 25(3), 280-290. doi:10.1002/(sici)1520-6408(1999)25:3<280::aid-dvg10>3.0.co;2-3

Geuten, K., & Irish, V. (2010). Hidden Variability of Floral Homeotic B Genes in Solanaceae Provides a Molecular Basis for the Evolution of Novel Functions. The Plant Cell, 22(8), 2562-2578. doi:10.1105/tpc.110.076026

Goto, K., & Meyerowitz, E. M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes & Development, 8(13), 1548-1560. doi:10.1101/gad.8.13.1548

Heard, J., & Dunn, K. (1995). Symbiotic induction of a MADS-box gene during development of alfalfa root nodules. Proceedings of the National Academy of Sciences, 92(12), 5273-5277. doi:10.1073/pnas.92.12.5273

Hecht, V., Foucher, F., Ferrándiz, C., Macknight, R., Navarro, C., Morin, J., … Weller, J. L. (2005). Conservation of Arabidopsis Flowering Genes in Model Legumes. Plant Physiology, 137(4), 1420-1434. doi:10.1104/pp.104.057018

The evolution of functionally novel proteins after gene duplication. (1994). Proceedings of the Royal Society of London. Series B: Biological Sciences, 256(1346), 119-124. doi:10.1098/rspb.1994.0058

Irish, V. F. (2006). Duplication, Diversification, and Comparative Genetics of Angiosperm MADS‐Box Genes. Advances in Botanical Research, 129-161. doi:10.1016/s0065-2296(06)44003-9

Jack, T., Fox, G. L., & Meyerowitz, E. M. (1994). Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. Cell, 76(4), 703-716. doi:10.1016/0092-8674(94)90509-6

Kim, S., Yoo, M.-J., Albert, V. A., Farris, J. S., Soltis, P. S., & Soltis, D. E. (2004). Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. American Journal of Botany, 91(12), 2102-2118. doi:10.3732/ajb.91.12.2102

Kramer, E. M., & Irish, V. F. (2000). Evolution of the Petal and Stamen Developmental Programs: Evidence from Comparative Studies of the Lower Eudicots and Basal Angiosperms. International Journal of Plant Sciences, 161(S6), S29-S40. doi:10.1086/317576

Kramer, E. M., Di Stilio, V. S., & Schlüter, P. M. (2003). Complex Patterns of Gene Duplication in the APETALA3 and PISTILLATA Lineages of the Ranunculaceae. International Journal of Plant Sciences, 164(1), 1-11. doi:10.1086/344694

Kramer, E. M., Su, H.-J., Wu, C.-C., & Hu, J.-M. (2006). BMC Evolutionary Biology, 6(1), 30. doi:10.1186/1471-2148-6-30

Lamb, R. S., & Irish, V. F. (2003). Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proceedings of the National Academy of Sciences, 100(11), 6558-6563. doi:10.1073/pnas.0631708100

Liu, Y., Nakayama, N., Schiff, M., Litt, A., Irish, V. F., & Dinesh-Kumar, S. P. (2004). Virus Induced Gene Silencing of a DEFICIENS Ortholog in Nicotiana Benthamiana. Plant Molecular Biology, 54(5), 701-711. doi:10.1023/b:plan.0000040899.53378.83

De Martino, G., Pan, I., Emmanuel, E., Levy, A., & Irish, V. F. (2006). Functional Analyses of Two Tomato APETALA3 Genes Demonstrate Diversification in Their Roles in Regulating Floral Development. The Plant Cell, 18(8), 1833-1845. doi:10.1105/tpc.106.042978

Ohno, S. (1970). Evolution by Gene Duplication. doi:10.1007/978-3-642-86659-3

Páez-Valencia, J., Sánchez-Gómez, C., Valencia-Mayoral, P., Contreras-Ramos, A., Hernández-Lucas, I., Orozco-Segovia, A., & Gamboa-deBuen, A. (2008). Localization of the MADS domain transcriptional factor NMH7 during seed, seedling and nodule development of Medicago sativa. Plant Science, 175(4), 596-603. doi:10.1016/j.plantsci.2008.06.008

Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z., & Lifschitz, E. (1991). The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes fromAntirrhinumandArabidopsis. The Plant Journal, 1(2), 255-266. doi:10.1111/j.1365-313x.1991.00255.x

Riechmann, J. L., Krizek, B. A., & Meyerowitz, E. M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences, 93(10), 4793-4798. doi:10.1073/pnas.93.10.4793

Rijpkema, A. S., Royaert, S., Zethof, J., van der Weerden, G., Gerats, T., & Vandenbussche, M. (2006). Analysis of the Petunia TM6 MADS Box Gene Reveals Functional Divergence within the DEF/AP3 Lineage. The Plant Cell, 18(8), 1819-1832. doi:10.1105/tpc.106.042937

Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P. J., Hansen, R., Tetens, F., … Sommer, H. (1992). Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. The EMBO Journal, 11(1), 251-263. doi:10.1002/j.1460-2075.1992.tb05048.x

Soltis, P. S., Brockington, S. F., Yoo, M.-J., Piedrahita, A., Latvis, M., Moore, M. J., … Soltis, D. E. (2009). Floral variation and floral genetics in basal angiosperms. American Journal of Botany, 96(1), 110-128. doi:10.3732/ajb.0800182

Sommer, H., Beltrán, J. P., Huijser, P., Pape, H., Lönnig, W. E., Saedler, H., & Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. The EMBO Journal, 9(3), 605-613. doi:10.1002/j.1460-2075.1990.tb08152.x

Stellari, G. M., Jaramillo, M. A., & Kramer, E. M. (2004). Evolution of the APETALA3 and PISTILLATA Lineages of MADS-Box–Containing Genes in the Basal Angiosperms. Molecular Biology and Evolution, 21(3), 506-519. doi:10.1093/molbev/msh044

Tadege, M., Ratet, P., & Mysore, K. S. (2005). Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 10(5), 229-235. doi:10.1016/j.tplants.2005.03.009

Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., … Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54(2), 335-347. doi:10.1111/j.1365-313x.2008.03418.x

Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. doi:10.1093/molbev/msm092

Taylor, S., Hofer, J., & Murfet, I. (2001). Stamina pistilloida, the Pea Ortholog of Fim and UFO, Is Required for Normal Development of Flowers, Inflorescences, and Leaves. The Plant Cell, 13(1), 31-46. doi:10.1105/tpc.13.1.31

Theissen, G., & Melzer, R. (2007). Molecular Mechanisms Underlying Origin and Diversification of the Angiosperm Flower. Annals of Botany, 100(3), 603-619. doi:10.1093/aob/mcm143

Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W. E., … Schwarz-Sommer, Z. (1992). GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. The EMBO Journal, 11(13), 4693-4704. doi:10.1002/j.1460-2075.1992.tb05574.x

Tucker, S. C. (2003). Floral Development in Legumes. Plant Physiology, 131(3), 911-926. doi:10.1104/pp.102.017459

Urbanus, S. L., de Folter, S., Shchennikova, A. V., Kaufmann, K., Immink, R. G., & Angenent, G. C. (2009). In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biology, 9(1), 5. doi:10.1186/1471-2229-9-5

Vandenbussche, M., Zethof, J., Royaert, S., Weterings, K., & Gerats, T. (2004). The Duplicated B-Class Heterodimer Model: Whorl-Specific Effects and Complex Genetic Interactions in Petunia hybrida Flower Development. The Plant Cell, 16(3), 741-754. doi:10.1105/tpc.019166

Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.x

Wu, C., Ma, Q., Yam, K.-M., Cheung, M.-Y., Xu, Y., Han, T., … Chong, K. (2005). In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta, 223(4), 725-735. doi:10.1007/s00425-005-0130-y

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem