- -

Functional specialization of duplicated AP3-like genes in Medicago truncatula

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Functional specialization of duplicated AP3-like genes in Medicago truncatula

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roque Mesa, Edelin Marta es_ES
dc.contributor.author Serwatowska, Joanna es_ES
dc.contributor.author Rochina Peñalver, Mª Cruz es_ES
dc.contributor.author Wen, Jiangqi es_ES
dc.contributor.author Mysore, Kirankumar S. es_ES
dc.contributor.author Yenush, Lynne es_ES
dc.contributor.author Beltran Porter, Jose Pio es_ES
dc.contributor.author Cañas Clemente, Luís Antonio es_ES
dc.date.accessioned 2016-04-06T11:36:15Z
dc.date.available 2016-04-06T11:36:15Z
dc.date.issued 2013-02
dc.identifier.issn 0960-7412
dc.identifier.uri http://hdl.handle.net/10251/62292
dc.description This is the accepted version of the following article: Roque, E., Serwatowska, J., Cruz Rochina, M., Wen, J., Mysore, K. S., Yenush, L., Beltrán, J. P. and Cañas, L. A. (2013), Functional specialization of duplicated AP3-like genes in Medicago truncatula. Plant J, 73: 663–675 , which has been published in final form at http://dx.doi.org/10.1111/tpj.12068 es_ES
dc.description.abstract The Bclass of MADS box genes has been studied in a wide range of plant species, but has remained largely uncharacterized in legumes. Here we investigate the evolutionary fate of the duplicated AP3-like genes of a legume species. To obtain insight into the extent to which B-class MADS box gene functions are conserved or have diversified in legumes, we isolated and characterized the two members of the AP3 lineage in Medicago truncatula: MtNMH7 and MtTM6 (euAP3 and paleoAP3 genes, respectively). A non-overlapping and complementary expression pattern of both genes was observed in petals and stamens. MtTM6 was expressed predominantly in the outer cell layers of both floral organs, and MtNMH7 in the inner cell layers of petals and stamens. Functional analyses by reverse genetics approaches (RNAi and Tnt1 mutagenesis) showed that the contribution of MtNMH7 to petal identity is more important than that of MtTM6, whereas MtTM6 plays a more important role in stamen identity than its paralog MtNMH7. Our results suggest that the M.truncatula AP3-like genes have undergone a functional specialization process associated with complete partitioning of gene expression patterns of the ancestral gene lineage. We provide information regarding the similarities and differences in petal and stamen development among core eudicots. es_ES
dc.description.sponsorship This work was funded by grants BIO2006-09374 and BIO2009-08134 from the Spanish Ministry of Science and Innovation. We are gratefully to Mario A. Fares and Santiago F. Elena (Instituto de Biologia Molecular y Celular de Plantas, Valencia, Spain) for helpful comments and bioinformatics support. The collaboration and assistance of Rafael Martinez-Pardo in the greenhouse is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof The Plant Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AP3-like genes es_ES
dc.subject MADS box es_ES
dc.subject Legumes es_ES
dc.subject Medicago truncatula es_ES
dc.subject Gene duplication es_ES
dc.subject Sub-functionalization es_ES
dc.subject Evolutionary fate es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Functional specialization of duplicated AP3-like genes in Medicago truncatula es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/tpj.12068
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BIO2006-09374/ES/ANALISIS GENETICO Y FUNCIONAL DEL DESARROLLO FLORAL EN MEDICAGO TRUNCATULA/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2009-08134/ES/Mejora Del Valor Nutritivo De La Alfalfa (Medicago Sativa L.) Mediante Ingenieria Genetica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Roque Mesa, EM.; Serwatowska, J.; Rochina Peñalver, MC.; Wen, J.; Mysore, KS.; Yenush, L.; Beltran Porter, JP.... (2013). Functional specialization of duplicated AP3-like genes in Medicago truncatula. The Plant Journal. 73(4):663-675. doi:10.1111/tpj.12068 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/tpj.12068 es_ES
dc.description.upvformatpinicio 663 es_ES
dc.description.upvformatpfin 675 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 73 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 254064 es_ES
dc.identifier.eissn 1365-313X
dc.description.references Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 es_ES
dc.description.references Aoki, S., Uehara, K., Imafuku, M., Hasebe, M., & Ito, M. (2004). Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. Journal of Plant Research, 117(3). doi:10.1007/s10265-004-0153-7 es_ES
dc.description.references Baum, D. (2002). Response: Missing links: the genetic architecture of flower and floral diversification. Trends in Plant Science, 7(1), 31-34. doi:10.1016/s1360-1385(01)02181-1 es_ES
dc.description.references A., B., K., K., A., F., C., V., M.-A., L., H., S., & G., T. (2002). A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Molecular Genetics and Genomics, 266(6), 942-950. doi:10.1007/s00438-001-0615-8 es_ES
dc.description.references Benlloch, R., d’ Erfurth, I., Ferrandiz, C., Cosson, V., Beltrán, J. P., Cañas, L. A., … Ratet, P. (2006). Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes. Plant Physiology, 142(3), 972-983. doi:10.1104/pp.106.083543 es_ES
dc.description.references Benlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R. V., … Madueño, F. (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development inMedicago truncatula. The Plant Journal, 60(1), 102-111. doi:10.1111/j.1365-313x.2009.03939.x es_ES
dc.description.references Berbel, A., Navarro, C., Ferrándiz, C., Cañas, L. A., Beltrán, J.-P., & Madueño, F. (2005). Functional Conservation of PISTILLATA Activity in a Pea Homolog Lacking the PI Motif. Plant Physiology, 139(1), 174-185. doi:10.1104/pp.104.057687 es_ES
dc.description.references Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37 es_ES
dc.description.references Broholm, S. K., Pöllänen, E., Ruokolainen, S., Tähtiharju, S., Kotilainen, M., Albert, V. A., … Teeri, T. H. (2009). Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. Journal of Experimental Botany, 61(1), 75-85. doi:10.1093/jxb/erp279 es_ES
dc.description.references Cheng, X., Wen, J., Tadege, M., Ratet, P., & Mysore, K. S. (2010). Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Plant Reverse Genetics, 179-190. doi:10.1007/978-1-60761-682-5_13 es_ES
dc.description.references Coen, E. S., & Meyerowitz, E. M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature, 353(6339), 31-37. doi:10.1038/353031a0 es_ES
dc.description.references Coronado, C., Zuanazzi, J., Sallaud, C., Quirion, J. C., Esnault, R., Husson, H. P., … Ratet, P. (1995). Alfalfa Root Flavonoid Production Is Nitrogen Regulated. Plant Physiology, 108(2), 533-542. doi:10.1104/pp.108.2.533 es_ES
dc.description.references Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670 es_ES
dc.description.references Drea, S., Hileman, L. C., de Martino, G., & Irish, V. F. (2007). Functional analyses of genetic pathways controlling petal specification in poppy. Development, 134(23), 4157-4166. doi:10.1242/dev.013136 es_ES
dc.description.references D’ Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of theTnt1tobacco retrotransposon in the model legumeMedicago truncatula. The Plant Journal, 34(1), 95-106. doi:10.1046/j.1365-313x.2003.01701.x es_ES
dc.description.references Ferr�ndiz, C., Navarro, C., G�mez, M. D., Ca�as, L. A., & Beltr�n, J. P. (1999). Flower development inPisum sativum: From the war of the whorls to the battle of the common primordia. Developmental Genetics, 25(3), 280-290. doi:10.1002/(sici)1520-6408(1999)25:3<280::aid-dvg10>3.0.co;2-3 es_ES
dc.description.references Geuten, K., & Irish, V. (2010). Hidden Variability of Floral Homeotic B Genes in Solanaceae Provides a Molecular Basis for the Evolution of Novel Functions. The Plant Cell, 22(8), 2562-2578. doi:10.1105/tpc.110.076026 es_ES
dc.description.references Goto, K., & Meyerowitz, E. M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes & Development, 8(13), 1548-1560. doi:10.1101/gad.8.13.1548 es_ES
dc.description.references Heard, J., & Dunn, K. (1995). Symbiotic induction of a MADS-box gene during development of alfalfa root nodules. Proceedings of the National Academy of Sciences, 92(12), 5273-5277. doi:10.1073/pnas.92.12.5273 es_ES
dc.description.references Hecht, V., Foucher, F., Ferrándiz, C., Macknight, R., Navarro, C., Morin, J., … Weller, J. L. (2005). Conservation of Arabidopsis Flowering Genes in Model Legumes. Plant Physiology, 137(4), 1420-1434. doi:10.1104/pp.104.057018 es_ES
dc.description.references The evolution of functionally novel proteins after gene duplication. (1994). Proceedings of the Royal Society of London. Series B: Biological Sciences, 256(1346), 119-124. doi:10.1098/rspb.1994.0058 es_ES
dc.description.references Irish, V. F. (2006). Duplication, Diversification, and Comparative Genetics of Angiosperm MADS‐Box Genes. Advances in Botanical Research, 129-161. doi:10.1016/s0065-2296(06)44003-9 es_ES
dc.description.references Jack, T., Fox, G. L., & Meyerowitz, E. M. (1994). Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. Cell, 76(4), 703-716. doi:10.1016/0092-8674(94)90509-6 es_ES
dc.description.references Kim, S., Yoo, M.-J., Albert, V. A., Farris, J. S., Soltis, P. S., & Soltis, D. E. (2004). Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. American Journal of Botany, 91(12), 2102-2118. doi:10.3732/ajb.91.12.2102 es_ES
dc.description.references Kramer, E. M., & Irish, V. F. (2000). Evolution of the Petal and Stamen Developmental Programs: Evidence from Comparative Studies of the Lower Eudicots and Basal Angiosperms. International Journal of Plant Sciences, 161(S6), S29-S40. doi:10.1086/317576 es_ES
dc.description.references Kramer, E. M., Di Stilio, V. S., & Schlüter, P. M. (2003). Complex Patterns of Gene Duplication in the APETALA3 and PISTILLATA Lineages of the Ranunculaceae. International Journal of Plant Sciences, 164(1), 1-11. doi:10.1086/344694 es_ES
dc.description.references Kramer, E. M., Su, H.-J., Wu, C.-C., & Hu, J.-M. (2006). BMC Evolutionary Biology, 6(1), 30. doi:10.1186/1471-2148-6-30 es_ES
dc.description.references Lamb, R. S., & Irish, V. F. (2003). Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proceedings of the National Academy of Sciences, 100(11), 6558-6563. doi:10.1073/pnas.0631708100 es_ES
dc.description.references Liu, Y., Nakayama, N., Schiff, M., Litt, A., Irish, V. F., & Dinesh-Kumar, S. P. (2004). Virus Induced Gene Silencing of a DEFICIENS Ortholog in Nicotiana Benthamiana. Plant Molecular Biology, 54(5), 701-711. doi:10.1023/b:plan.0000040899.53378.83 es_ES
dc.description.references De Martino, G., Pan, I., Emmanuel, E., Levy, A., & Irish, V. F. (2006). Functional Analyses of Two Tomato APETALA3 Genes Demonstrate Diversification in Their Roles in Regulating Floral Development. The Plant Cell, 18(8), 1833-1845. doi:10.1105/tpc.106.042978 es_ES
dc.description.references Ohno, S. (1970). Evolution by Gene Duplication. doi:10.1007/978-3-642-86659-3 es_ES
dc.description.references Páez-Valencia, J., Sánchez-Gómez, C., Valencia-Mayoral, P., Contreras-Ramos, A., Hernández-Lucas, I., Orozco-Segovia, A., & Gamboa-deBuen, A. (2008). Localization of the MADS domain transcriptional factor NMH7 during seed, seedling and nodule development of Medicago sativa. Plant Science, 175(4), 596-603. doi:10.1016/j.plantsci.2008.06.008 es_ES
dc.description.references Pnueli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z., & Lifschitz, E. (1991). The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes fromAntirrhinumandArabidopsis. The Plant Journal, 1(2), 255-266. doi:10.1111/j.1365-313x.1991.00255.x es_ES
dc.description.references Riechmann, J. L., Krizek, B. A., & Meyerowitz, E. M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences, 93(10), 4793-4798. doi:10.1073/pnas.93.10.4793 es_ES
dc.description.references Rijpkema, A. S., Royaert, S., Zethof, J., van der Weerden, G., Gerats, T., & Vandenbussche, M. (2006). Analysis of the Petunia TM6 MADS Box Gene Reveals Functional Divergence within the DEF/AP3 Lineage. The Plant Cell, 18(8), 1819-1832. doi:10.1105/tpc.106.042937 es_ES
dc.description.references Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P. J., Hansen, R., Tetens, F., … Sommer, H. (1992). Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. The EMBO Journal, 11(1), 251-263. doi:10.1002/j.1460-2075.1992.tb05048.x es_ES
dc.description.references Soltis, P. S., Brockington, S. F., Yoo, M.-J., Piedrahita, A., Latvis, M., Moore, M. J., … Soltis, D. E. (2009). Floral variation and floral genetics in basal angiosperms. American Journal of Botany, 96(1), 110-128. doi:10.3732/ajb.0800182 es_ES
dc.description.references Sommer, H., Beltrán, J. P., Huijser, P., Pape, H., Lönnig, W. E., Saedler, H., & Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. The EMBO Journal, 9(3), 605-613. doi:10.1002/j.1460-2075.1990.tb08152.x es_ES
dc.description.references Stellari, G. M., Jaramillo, M. A., & Kramer, E. M. (2004). Evolution of the APETALA3 and PISTILLATA Lineages of MADS-Box–Containing Genes in the Basal Angiosperms. Molecular Biology and Evolution, 21(3), 506-519. doi:10.1093/molbev/msh044 es_ES
dc.description.references Tadege, M., Ratet, P., & Mysore, K. S. (2005). Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 10(5), 229-235. doi:10.1016/j.tplants.2005.03.009 es_ES
dc.description.references Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., … Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54(2), 335-347. doi:10.1111/j.1365-313x.2008.03418.x es_ES
dc.description.references Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. doi:10.1093/molbev/msm092 es_ES
dc.description.references Taylor, S., Hofer, J., & Murfet, I. (2001). Stamina pistilloida, the Pea Ortholog of Fim and UFO, Is Required for Normal Development of Flowers, Inflorescences, and Leaves. The Plant Cell, 13(1), 31-46. doi:10.1105/tpc.13.1.31 es_ES
dc.description.references Theissen, G., & Melzer, R. (2007). Molecular Mechanisms Underlying Origin and Diversification of the Angiosperm Flower. Annals of Botany, 100(3), 603-619. doi:10.1093/aob/mcm143 es_ES
dc.description.references Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W. E., … Schwarz-Sommer, Z. (1992). GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. The EMBO Journal, 11(13), 4693-4704. doi:10.1002/j.1460-2075.1992.tb05574.x es_ES
dc.description.references Tucker, S. C. (2003). Floral Development in Legumes. Plant Physiology, 131(3), 911-926. doi:10.1104/pp.102.017459 es_ES
dc.description.references Urbanus, S. L., de Folter, S., Shchennikova, A. V., Kaufmann, K., Immink, R. G., & Angenent, G. C. (2009). In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biology, 9(1), 5. doi:10.1186/1471-2229-9-5 es_ES
dc.description.references Vandenbussche, M., Zethof, J., Royaert, S., Weterings, K., & Gerats, T. (2004). The Duplicated B-Class Heterodimer Model: Whorl-Specific Effects and Complex Genetic Interactions in Petunia hybrida Flower Development. The Plant Cell, 16(3), 741-754. doi:10.1105/tpc.019166 es_ES
dc.description.references Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.x es_ES
dc.description.references Wu, C., Ma, Q., Yam, K.-M., Cheung, M.-Y., Xu, Y., Han, T., … Chong, K. (2005). In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta, 223(4), 725-735. doi:10.1007/s00425-005-0130-y es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem