Mostrar el registro sencillo del ítem
dc.contributor.author | Jimenez, Noe | es_ES |
dc.contributor.author | Romero García, Vicente | es_ES |
dc.contributor.author | Picó Vila, Rubén | es_ES |
dc.contributor.author | García-Raffi, L. M. | es_ES |
dc.contributor.author | Staliünas, Kestutis | es_ES |
dc.date.accessioned | 2016-04-08T11:18:54Z | |
dc.date.available | 2016-04-08T11:18:54Z | |
dc.date.issued | 2015-11-16 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.uri | http://hdl.handle.net/10251/62369 | |
dc.description | This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Applied Physics Letters 107, 204103 (2015); doi: 10.1063/1.4935917 and may be found at http://dx.doi.org/10.1063/1.4935917. | es_ES |
dc.description.abstract | We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 x 10(-4)). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging. (c) 2015 AIP Publishing LLC. | es_ES |
dc.description.sponsorship | The work was supported by Spanish Ministry of Science and Innovation and European Union FEDER through Projects FIS2011-29734-C02-01 and -02, MTM2012-36740c02-02, and PAID 2012/253. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Applied Physics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Focusing | es_ES |
dc.subject | Grating | es_ES |
dc.subject | Ultrasound | es_ES |
dc.subject | Diffraction gratings | es_ES |
dc.subject | Medical imaging | es_ES |
dc.subject | Nonlinear acoustics | es_ES |
dc.subject | Nonlinear optics | es_ES |
dc.subject | Acoustical lenses | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4935917 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-01/ES/CONTROL DE LA DIFRACCION DE LA LUZ EN MEDIOS MODULADOS/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-2012-253/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/OPERADORES MULTILINEALES, ESPACIOS DE FUNCIONES/ INTEGRABLES Y APLICACIONES./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Jimenez, N.; Romero García, V.; Picó Vila, R.; García-Raffi, LM.; Staliünas, K. (2015). Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water. Applied Physics Letters. 107(20). doi:10.1063/1.4935917 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4935917 | es_ES |
dc.description.upvformatpinicio | 204103 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 107 | es_ES |
dc.description.issue | 20 | es_ES |
dc.relation.senia | 297506 | es_ES |
dc.identifier.eissn | 1077-3118 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Farnow, S. A., & Auld, B. A. (1974). Acoustic Fresnel zone plate transducers. Applied Physics Letters, 25(12), 681-682. doi:10.1063/1.1655359 | es_ES |
dc.description.references | Sleva, M. Z., Hunt, W. D., & Briggs, R. D. (1994). Focusing performance of epoxy‐ and air‐backed polyvinylidene fluoride Fresnel zone plates. The Journal of the Acoustical Society of America, 96(3), 1627-1633. doi:10.1121/1.410242 | es_ES |
dc.description.references | Wang, H., Xing, D., & Xiang, L. (2008). Photoacoustic imaging using an ultrasonic Fresnel zone plate transducer. Journal of Physics D: Applied Physics, 41(9), 095111. doi:10.1088/0022-3727/41/9/095111 | es_ES |
dc.description.references | Molerón, M., Serra-Garcia, M., & Daraio, C. (2014). Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 105(11), 114109. doi:10.1063/1.4896276 | es_ES |
dc.description.references | Clement, G., Nomura, H., & Kamakura, T. (2015). Ultrasound field measurement using a binary lens. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(2), 350-359. doi:10.1109/tuffc.2014.006800 | es_ES |
dc.description.references | Jiménez, N., Romero-García, V., Picó, R., Cebrecos, A., Sánchez-Morcillo, V. J., Garcia-Raffi, L. M., … Staliunas, K. (2014). Acoustic Bessel-like beam formation by an axisymmetric grating. EPL (Europhysics Letters), 106(2), 24005. doi:10.1209/0295-5075/106/24005 | es_ES |
dc.description.references | Sarvazyan, A. P., Rudenko, O. V., Swanson, S. D., Fowlkes, J. B., & Emelianov, S. Y. (1998). Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound in Medicine & Biology, 24(9), 1419-1435. doi:10.1016/s0301-5629(98)00110-0 | es_ES |
dc.description.references | Nightingale, K., Soo, M. S., Nightingale, R., & Trahey, G. (2002). Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound in Medicine & Biology, 28(2), 227-235. doi:10.1016/s0301-5629(01)00499-9 | es_ES |
dc.description.references | Konofagou, E. E., & Hynynen, K. (2003). Localized harmonic motion imaging: theory, simulations and experiments. Ultrasound in Medicine & Biology, 29(10), 1405-1413. doi:10.1016/s0301-5629(03)00953-0 | es_ES |
dc.description.references | Duck, F. A. (2002). Nonlinear acoustics in diagnostic ultrasound. Ultrasound in Medicine & Biology, 28(1), 1-18. doi:10.1016/s0301-5629(01)00463-x | es_ES |
dc.description.references | Bailey, M. R., Khokhlova, V. A., Sapozhnikov, O. A., Kargl, S. G., & Crum, L. A. (2003). Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoustical Physics, 49(4), 369-388. doi:10.1134/1.1591291 | es_ES |
dc.description.references | M. A. Averkiou , D. N. Roundhill , and J. Powers , in IEEE Proceedings of the Ultrasonics Symposium ( IEEE, 1997), Vol. 2, pp. 1561–1566. | es_ES |
dc.description.references | Nguyen, M. M., Shin, J., & Yen, J. (2014). Harmonic Imaging with Fresnel Beamforming in the Presence of Phase Aberration. Ultrasound in Medicine & Biology, 40(10), 2488-2498. doi:10.1016/j.ultrasmedbio.2014.03.030 | es_ES |
dc.description.references | Lu, J.-Y., & Greenleaf, J. F. (1990). Ultrasonic nondiffracting transducer for medical imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 37(5), 438-447. doi:10.1109/58.105250 | es_ES |
dc.description.references | N. Jiménez , “ Nonlinear acoustic waves in complex media,” Ph.D. thesis, Universitat Politècnica de València, 2015. | es_ES |