- -

Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.contributor.author Staliünas, Kestutis es_ES
dc.date.accessioned 2016-04-08T11:18:54Z
dc.date.available 2016-04-08T11:18:54Z
dc.date.issued 2015-11-16
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10251/62369
dc.description This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Applied Physics Letters 107, 204103 (2015); doi: 10.1063/1.4935917 and may be found at http://dx.doi.org/10.1063/1.4935917. es_ES
dc.description.abstract We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 x 10(-4)). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging. (c) 2015 AIP Publishing LLC. es_ES
dc.description.sponsorship The work was supported by Spanish Ministry of Science and Innovation and European Union FEDER through Projects FIS2011-29734-C02-01 and -02, MTM2012-36740c02-02, and PAID 2012/253. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Focusing es_ES
dc.subject Grating es_ES
dc.subject Ultrasound es_ES
dc.subject Diffraction gratings es_ES
dc.subject Medical imaging es_ES
dc.subject Nonlinear acoustics es_ES
dc.subject Nonlinear optics es_ES
dc.subject Acoustical lenses es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4935917 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-01/ES/CONTROL DE LA DIFRACCION DE LA LUZ EN MEDIOS MODULADOS/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-2012-253/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/OPERADORES MULTILINEALES, ESPACIOS DE FUNCIONES/ INTEGRABLES Y APLICACIONES./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Jimenez, N.; Romero García, V.; Picó Vila, R.; García-Raffi, LM.; Staliünas, K. (2015). Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water. Applied Physics Letters. 107(20). doi:10.1063/1.4935917 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4935917 es_ES
dc.description.upvformatpinicio 204103 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 107 es_ES
dc.description.issue 20 es_ES
dc.relation.senia 297506 es_ES
dc.identifier.eissn 1077-3118
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Farnow, S. A., & Auld, B. A. (1974). Acoustic Fresnel zone plate transducers. Applied Physics Letters, 25(12), 681-682. doi:10.1063/1.1655359 es_ES
dc.description.references Sleva, M. Z., Hunt, W. D., & Briggs, R. D. (1994). Focusing performance of epoxy‐ and air‐backed polyvinylidene fluoride Fresnel zone plates. The Journal of the Acoustical Society of America, 96(3), 1627-1633. doi:10.1121/1.410242 es_ES
dc.description.references Wang, H., Xing, D., & Xiang, L. (2008). Photoacoustic imaging using an ultrasonic Fresnel zone plate transducer. Journal of Physics D: Applied Physics, 41(9), 095111. doi:10.1088/0022-3727/41/9/095111 es_ES
dc.description.references Molerón, M., Serra-Garcia, M., & Daraio, C. (2014). Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 105(11), 114109. doi:10.1063/1.4896276 es_ES
dc.description.references Clement, G., Nomura, H., & Kamakura, T. (2015). Ultrasound field measurement using a binary lens. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(2), 350-359. doi:10.1109/tuffc.2014.006800 es_ES
dc.description.references Jiménez, N., Romero-García, V., Picó, R., Cebrecos, A., Sánchez-Morcillo, V. J., Garcia-Raffi, L. M., … Staliunas, K. (2014). Acoustic Bessel-like beam formation by an axisymmetric grating. EPL (Europhysics Letters), 106(2), 24005. doi:10.1209/0295-5075/106/24005 es_ES
dc.description.references Sarvazyan, A. P., Rudenko, O. V., Swanson, S. D., Fowlkes, J. B., & Emelianov, S. Y. (1998). Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound in Medicine & Biology, 24(9), 1419-1435. doi:10.1016/s0301-5629(98)00110-0 es_ES
dc.description.references Nightingale, K., Soo, M. S., Nightingale, R., & Trahey, G. (2002). Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound in Medicine & Biology, 28(2), 227-235. doi:10.1016/s0301-5629(01)00499-9 es_ES
dc.description.references Konofagou, E. E., & Hynynen, K. (2003). Localized harmonic motion imaging: theory, simulations and experiments. Ultrasound in Medicine & Biology, 29(10), 1405-1413. doi:10.1016/s0301-5629(03)00953-0 es_ES
dc.description.references Duck, F. A. (2002). Nonlinear acoustics in diagnostic ultrasound. Ultrasound in Medicine & Biology, 28(1), 1-18. doi:10.1016/s0301-5629(01)00463-x es_ES
dc.description.references Bailey, M. R., Khokhlova, V. A., Sapozhnikov, O. A., Kargl, S. G., & Crum, L. A. (2003). Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoustical Physics, 49(4), 369-388. doi:10.1134/1.1591291 es_ES
dc.description.references M. A. Averkiou , D. N. Roundhill , and J. Powers , in IEEE Proceedings of the Ultrasonics Symposium ( IEEE, 1997), Vol. 2, pp. 1561–1566. es_ES
dc.description.references Nguyen, M. M., Shin, J., & Yen, J. (2014). Harmonic Imaging with Fresnel Beamforming in the Presence of Phase Aberration. Ultrasound in Medicine & Biology, 40(10), 2488-2498. doi:10.1016/j.ultrasmedbio.2014.03.030 es_ES
dc.description.references Lu, J.-Y., & Greenleaf, J. F. (1990). Ultrasonic nondiffracting transducer for medical imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 37(5), 438-447. doi:10.1109/58.105250 es_ES
dc.description.references N. Jiménez , “ Nonlinear acoustic waves in complex media,” Ph.D. thesis, Universitat Politècnica de València, 2015. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem