- -

Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts

Show full item record

Corma Canós, A.; Ródenas Torralba, T.; Sabater Picot, MJ. (2012). Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts. Chemical Science. 3(2):398-404. https://doi.org/10.1039/c1sc00466b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62415

Files in this item

Item Metadata

Title: Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts
Author: Corma Canós, Avelino Ródenas Torralba, Tania Sabater Picot, Mª José
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
Thiols are smoothly and efficiently oxidized to disulfides (RSSR) with air in the presence of gold nanoparticles supported on CeO2 in absence of solvent, as well as in aqueous solutions and neutral pH. It is shown that the ...[+]
Subjects: MOLECULAR-OXYGEN , AIR OXIDATION , SILICA-GEL , C-C , EFFICIENT , BONDS , MILD , ACID , PERMANGANATE , COBALT(II)
Copyrigths: Reserva de todos los derechos
Source:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/c1sc00466b
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c1sc00466b
Project ID:
info:eu-repo/grantAgreement/MEC//MAT2006-14274-C02-01/ES/DISEÑO MOLECULAR DE NANOMATERIALES ESTRUCTURADOS ORGANICOS-INORGANICOS PARA SU APLICACION EN CATALISIS, SEPARACION DE GASES Y BIOMEDICA./
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F130/ES/Química sostenible: Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas./
Thanks:
lFinancial support by Consolider-Ingenio 2010 (project MULTICAT), Spanish MICINN (Projects MAT2006-14274-C02-01 and MAT2011-28009), Generalitat Valenciana (Project PROMETEO/2008/130) and Fundacion Areces are gratefully ...[+]
Type: Artículo

References

Block, E. (1992). The Organosulfur Chemistry of the GenusAllium - Implications for the Organic Chemistry of Sulfur. Angewandte Chemie International Edition in English, 31(9), 1135-1178. doi:10.1002/anie.199211351

Kanda, Y., & Fukuyama, T. (1993). Total synthesis of (+)-leinamycin. Journal of the American Chemical Society, 115(18), 8451-8452. doi:10.1021/ja00071a066

Gilbert, H. F. (1995). [2] Thiol/disulfide exchange equilibria and disulfidebond stability. Biothiols Part A Monothiols and Dithiols, Protein Thiols, and Thiyl Radicals, 8-28. doi:10.1016/0076-6879(95)51107-5 [+]
Block, E. (1992). The Organosulfur Chemistry of the GenusAllium - Implications for the Organic Chemistry of Sulfur. Angewandte Chemie International Edition in English, 31(9), 1135-1178. doi:10.1002/anie.199211351

Kanda, Y., & Fukuyama, T. (1993). Total synthesis of (+)-leinamycin. Journal of the American Chemical Society, 115(18), 8451-8452. doi:10.1021/ja00071a066

Gilbert, H. F. (1995). [2] Thiol/disulfide exchange equilibria and disulfidebond stability. Biothiols Part A Monothiols and Dithiols, Protein Thiols, and Thiyl Radicals, 8-28. doi:10.1016/0076-6879(95)51107-5

Eckardt, N. A. (2006). Ferredoxin-Thioredoxin System Plays a Key Role in Plant Response to Oxidative Stress. The Plant Cell, 18(8), 1782-1782. doi:10.1105/tpc.106.180810

Balmer, Y., Vensel, W. H., Cai, N., Manieri, W., Schurmann, P., Hurkman, W. J., & Buchanan, B. B. (2006). A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proceedings of the National Academy of Sciences, 103(8), 2988-2993. doi:10.1073/pnas.0511040103

Swaisgood, H. E. (2005). The importance of disulfide bridging. Biotechnology Advances, 23(1), 71-73. doi:10.1016/j.biotechadv.2004.09.004

Visschers, R. W., & de Jongh, H. H. J. (2005). Disulphide bond formation in food protein aggregation and gelation. Biotechnology Advances, 23(1), 75-80. doi:10.1016/j.biotechadv.2004.09.005

Bulaj, G. (2005). Formation of disulfide bonds in proteins and peptides. Biotechnology Advances, 23(1), 87-92. doi:10.1016/j.biotechadv.2004.09.002

Kühle, E., & Klauke, E. (1977). Fluorinated Isocyanates and Their Derivatives as Intermediates for Biologically Active Compounds. Angewandte Chemie International Edition in English, 16(11), 735-742. doi:10.1002/anie.197707353

Firouzabadi, H., Iranpoor, N., Parham, H., Sardarian, A., & Toofan, J. (1984). Oxidation of Thiols to Their Disulfides with Bis Trinitratocerium (IV)l Chromate [Ce(NO3)312CrO4and Pyridinum Chlorochromate. Synthetic Communications, 14(8), 717-724. doi:10.1080/00397918408059586

Firouzabadi, H., Naderi, M., Sardarian, A., & Vessal, B. (1983). The Facile Oxidation of Thiols to Disulfides with Bis(2,2′-Bipyridyl) Copper-(II) Permanganate. Synthetic Communications, 13(7), 611-615. doi:10.1080/00397918308059536

Noureldin, N. A., Caldwell, M., Hendry, J., & Lee, D. G. (1998). Heterogeneous Permanganate Oxidation of Thiols. Synthesis, 1998(11), 1587-1589. doi:10.1055/s-1998-2190

Wallace, T. J. (1966). Reactions of Thiols with Metals. I. Low-Temperature Oxidation by Metal Oxides1. The Journal of Organic Chemistry, 31(4), 1217-1221. doi:10.1021/jo01342a056

Firouzabadi, H., Iranpoor, N., Kiaeezadeh, F., & Toofan, J. (1986). Chromium(VI) based oxidants-1. Tetrahedron, 42(2), 719-725. doi:10.1016/s0040-4020(01)87476-7

McKillop, A., Koyunçu, D., Krief, A., Dumont, W., Renier, P., & Trabelsi, M. (1990). Efficicient, high yield, oxidation of thiols and selenols to disulphides and diselenides. Tetrahedron Letters, 31(35), 5007-5010. doi:10.1016/s0040-4039(00)97790-6

Ramesha, A. R., & Chandrasekaran, S. (1994). A facile entry to macrocyclic disulfides: an efficient synthesis of redox-switched crown ethers. The Journal of Organic Chemistry, 59(6), 1354-1357. doi:10.1021/jo00085a025

Ramadas, K., & Srinivasan, N. (1995). Sodium Chlorite - Yet Another Oxidant for Thiols to Disulphides. Synthetic Communications, 25(2), 227-234. doi:10.1080/00397919508010811

Pryor, W. A., Church, D. F., Govindan, C. K., & Crank, G. (1982). Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. The Journal of Organic Chemistry, 47(1), 156-159. doi:10.1021/jo00340a038

Iranpoor, N., Firouzabadi, H., & Zolfigol, M. A. (1998). Dinitrogen Tetroxide Copper Nitrate Complex [Cu(NO3)2.N2O4] As a New Nitrosating Agent for Catalytic Coupling of Thiols via Thionitrite. Synthetic Communications, 28(2), 367-375. doi:10.1080/00397919808005729

Wu, X., Rieke, R. D., & Zhu, L. (1996). Preparation of Disulfides by the Oxidation of Thiols Using Bromine. Synthetic Communications, 26(1), 191-196. doi:10.1080/00397919608003879

Ali, M. H., & McDermott, M. (2002). Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support. Tetrahedron Letters, 43(35), 6271-6273. doi:10.1016/s0040-4039(02)01220-0

Khazaei, A., Zolfigol, M. A., & Rostami, A. (2004). 1,3-Dibromo-5,5-Dimethylhydantoin [DBDMH] as an Efficient and Selective Agent for the Oxidation of Thiols to Disulfides in Solution or under Solvent-Free Conditions. Synthesis, (18), 2959-2961. doi:10.1055/s-2004-834919

Joshi, A. V., Bhusare, S., Baidossi, M., Qafisheh, N., & Sasson, Y. (2005). Oxidative coupling of thiols to disulfides using a solid anhydrous potassium phosphate catalyst. Tetrahedron Letters, 46(20), 3583-3585. doi:10.1016/j.tetlet.2005.03.040

Patel, S., & Mishra, B. K. (2004). Cetyltrimethylammonium dichromate: a mild oxidant for coupling amines and thiols. Tetrahedron Letters, 45(7), 1371-1372. doi:10.1016/j.tetlet.2003.12.068

Leino, R., & Lönnqvist, J.-E. (2004). A very simple method for the preparation of symmetrical disulfides. Tetrahedron Letters, 45(46), 8489-8491. doi:10.1016/j.tetlet.2004.09.100

Delaude, L., & Laszlo, P. (1996). A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)1. The Journal of Organic Chemistry, 61(18), 6360-6370. doi:10.1021/jo960633p

Peskin, A. V., & Winterbourn, C. C. (2001). Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radical Biology and Medicine, 30(5), 572-579. doi:10.1016/s0891-5849(00)00506-2

Akdag, A., Webb, T., & Worley, S. D. (2006). Oxidation of thiols to disulfides with monochloro poly(styrenehydantoin) beads. Tetrahedron Letters, 47(21), 3509-3510. doi:10.1016/j.tetlet.2006.03.105

Kirihara, M., Asai, Y., Ogawa, S., Noguchi, T., Hatano, A., & Hirai, Y. (2007). A Mild and Environmentally Benign Oxidation of Thiols to Disulfides. Synthesis, 2007(21), 3286-3289. doi:10.1055/s-2007-990800

LIU, K.-T., & TONG, Y.-C. (1978). A Facile Conversion of Thiols to Disulfides. Synthesis, 1978(09), 669-670. doi:10.1055/s-1978-24844

Rao, T. V., Sain, B., Murthy, P. S., Rao, T. S. R. P., Joshi, G. C., & Jain, A. K. (1997). Iron(III )–Ethylenediaminetetraacetic AcidMediated Oxidation of Thiols to Disulfides with MolecularOxygen†. Journal of Chemical Research, (8), 300-301. doi:10.1039/a702061i

Walters, M. A., Chaparro, J., Siddiqui, T., Williams, F., Ulku, C., & Rheingold, A. L. (2006). The formation of disulfides by the [Fe(nta)Cl2]2− catalyzed air oxidation of thiols and dithiols. Inorganica Chimica Acta, 359(12), 3996-4000. doi:10.1016/j.ica.2006.03.043

Rao, T. V., Rao, K. N., Jain, S. L., & Sain, B. (2002). COBALT PHTHALOCYANINE MEDIATED AEROBIC OXIDATION OF THIOLS: A SIMPLE AND CONVENIENT PREPARATION OF DISULPHIDES. Synthetic Communications, 32(8), 1151-1157. doi:10.1081/scc-120003604

Simándi, L. I., Németh, S., & Rumelis, N. (1987). Cobalt(II) ion catalyzed oxidation of o-substituted anilines with molecular oxygen. Journal of Molecular Catalysis, 42(3), 357-360. doi:10.1016/0304-5102(87)85011-3

S. Uemura , Comprehensive Organic Synthesis, B. M. Trost, I. Fleming Ed., Pergamon Press, New York, 1991, Vol 7., 757

Hashemi, M. M., & Karimi-Jaberi, Z. (2004). Oxidation of Thiols to Disulfides by Oxygen in Presence of Cobalt(II) and Manganese(II) Salts of 4-Aminobenzoic Acid Supported on Silica Gel. Monatshefte f�r Chemie / Chemical Monthly, 135(1), 41-43. doi:10.1007/s00706-003-0102-5

Cervilla, A., Corma, A., Fornes, V., Llopis, E., Palanca, P., Rey, F., & Ribera, A. (1994). Intercalation of [MoVIO2(O2CC(S)Ph2)2]2- in a Zn(II)-Al(III) Layered Double Hydroxide Host: A Strategy for the Heterogeneous Catalysis of the Air Oxidation of Thiols. Journal of the American Chemical Society, 116(4), 1595-1596. doi:10.1021/ja00083a065

Saxena, A., Kumar, A., & Mozumdar, S. (2007). Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 269(1-2), 35-40. doi:10.1016/j.molcata.2006.12.042

Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u

Arcadi, A. (2008). Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 108(8), 3266-3325. doi:10.1021/cr068435d

Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x

Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430g

Fürstner, A. (2009). Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chemical Society Reviews, 38(11), 3208. doi:10.1039/b816696j

Shen, H. C. (2008). Recent advances in syntheses of heterocycles and carbocycles via homogeneous gold catalysis. Part 1: Heteroatom addition and hydroarylation reactions of alkynes, allenes, and alkenes. Tetrahedron, 64(18), 3885-3903. doi:10.1016/j.tet.2008.01.081

Hashmi, A. S. K., & Rudolph, M. (2008). Gold catalysis in total synthesis. Chemical Society Reviews, 37(9), 1766. doi:10.1039/b615629k

Muzart, J. (2008). Gold-catalysed reactions of alcohols: isomerisation, inter- and intramolecular reactions leading to C–C and C–heteroatom bonds. Tetrahedron, 64(25), 5815-5849. doi:10.1016/j.tet.2008.04.018

Hutchings, G. J. (2008). Supported gold and gold palladium catalysts for selective chemical synthesis. Catalysis Today, 138(1-2), 9-14. doi:10.1016/j.cattod.2008.04.029

Widenhoefer, R. A., & Han, X. (2006). Gold-Catalyzed Hydroamination of C–C Multiple Bonds. European Journal of Organic Chemistry, 2006(20), 4555-4563. doi:10.1002/ejoc.200600399

Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8

Haruta, M. (1997). Catalysis Surveys from Japan, 1(1), 61-73. doi:10.1023/a:1019068728295

A. Corma , H.Garcia, Supported gold nanoparticles as oxidation catalysts from Nanoparticles and Catalysis, 2008, 389. Editor: D. Astruc

C. Della Pina , E.Falletta, M.Rossi, Gold nanoparticles-catalyzed oxidations in organic chemistry, ibid, p. 427

C. Louis , Gold nanoparticles: recent advances in CO oxidation, ibid, pp. 475–503

Carrettin, S., Concepción, P., Corma, A., López Nieto, J. M., & Puntes, V. F. (2004). Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude. Angewandte Chemie International Edition, 43(19), 2538-2540. doi:10.1002/anie.200353570

Budroni, G., & Corma, A. (2006). Gold–Organic–Inorganic High-Surface-Area Materials as Precursors of Highly Active Catalysts. Angewandte Chemie International Edition, 45(20), 3328-3331. doi:10.1002/anie.200600552

The pair reduced l-glutathione/oxidized l-glutathione (G–SH/G–SS–G) is the major intracellular redox buffer

Zhang, X., & Corma, A. (2008). Supported Gold(III) Catalysts for Highly Efficient Three-Component Coupling Reactions. Angewandte Chemie International Edition, 47(23), 4358-4361. doi:10.1002/anie.200800098

Jenner, E. L., & Lindsey, R. V. (1961). Syntheses by Free-radical Reactions. XIII. Reactions of Thiyl Radicals with Olefins. Journal of the American Chemical Society, 83(8), 1911-1915. doi:10.1021/ja01469a031

Handbook of Chemistry and Physics, 82nd ed. CRC Press, New York, 2001, p 9–52–9–63

Buettner, G. R. (1987). Spin Trapping: ESR parameters of spin adducts 1474 1528V. Free Radical Biology and Medicine, 3(4), 259-303. doi:10.1016/s0891-5849(87)80033-3

Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401

Cullis, C. F., Hopton, J. D., Swan, C. J., & Trimm, D. L. (2007). Oxidation of thiols in gas-liquid systems. II. Reaction in the presence of added metal catalysts. Journal of Applied Chemistry, 18(11), 335-339. doi:10.1002/jctb.5010181105

the amount of water formed was estimated by the Karl-Fisher method

Collet, J.-F., & Bardwell, J. C. A. (2002). Disulfides out of thin air. Nature Structural Biology, 9(1), 2-3. doi:10.1038/nsb0102-2

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record