Mostrar el registro sencillo del ítem
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Ródenas Torralba, Tania | es_ES |
dc.contributor.author | Sabater Picot, Mª José | es_ES |
dc.date.accessioned | 2016-04-11T10:43:32Z | |
dc.date.available | 2016-04-11T10:43:32Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 2041-6520 | |
dc.identifier.uri | http://hdl.handle.net/10251/62415 | |
dc.description.abstract | Thiols are smoothly and efficiently oxidized to disulfides (RSSR) with air in the presence of gold nanoparticles supported on CeO2 in absence of solvent, as well as in aqueous solutions and neutral pH. It is shown that the reaction can occur through the coupling of two sulphur radicals on the metal surface. The sulphur radicals are formed from thiols by one-electron oxidation with the metal. This reaction mechanism strongly resembles that found for sulfhydryl oxidases, a class of enzymes which are involved in the oxidative protein folding through de novo formation of disulfides from thiols. | es_ES |
dc.description.sponsorship | lFinancial support by Consolider-Ingenio 2010 (project MULTICAT), Spanish MICINN (Projects MAT2006-14274-C02-01 and MAT2011-28009), Generalitat Valenciana (Project PROMETEO/2008/130) and Fundacion Areces are gratefully acknowledged. T.R. expresses her gratitude to Consejo Superior de Investigaciones Cientificas for an I3-P fellowship. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MOLECULAR-OXYGEN | es_ES |
dc.subject | AIR OXIDATION | es_ES |
dc.subject | SILICA-GEL | es_ES |
dc.subject | C-C | es_ES |
dc.subject | EFFICIENT | es_ES |
dc.subject | BONDS | es_ES |
dc.subject | MILD | es_ES |
dc.subject | ACID | es_ES |
dc.subject | PERMANGANATE | es_ES |
dc.subject | COBALT(II) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c1sc00466b | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2006-14274-C02-01/ES/DISEÑO MOLECULAR DE NANOMATERIALES ESTRUCTURADOS ORGANICOS-INORGANICOS PARA SU APLICACION EN CATALISIS, SEPARACION DE GASES Y BIOMEDICA./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F130/ES/Química sostenible: Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Corma Canós, A.; Ródenas Torralba, T.; Sabater Picot, MJ. (2012). Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts. Chemical Science. 3(2):398-404. https://doi.org/10.1039/c1sc00466b | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c1sc00466b | es_ES |
dc.description.upvformatpinicio | 398 | es_ES |
dc.description.upvformatpfin | 404 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 214215 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.description.references | Block, E. (1992). The Organosulfur Chemistry of the GenusAllium - Implications for the Organic Chemistry of Sulfur. Angewandte Chemie International Edition in English, 31(9), 1135-1178. doi:10.1002/anie.199211351 | es_ES |
dc.description.references | Kanda, Y., & Fukuyama, T. (1993). Total synthesis of (+)-leinamycin. Journal of the American Chemical Society, 115(18), 8451-8452. doi:10.1021/ja00071a066 | es_ES |
dc.description.references | Gilbert, H. F. (1995). [2] Thiol/disulfide exchange equilibria and disulfidebond stability. Biothiols Part A Monothiols and Dithiols, Protein Thiols, and Thiyl Radicals, 8-28. doi:10.1016/0076-6879(95)51107-5 | es_ES |
dc.description.references | Eckardt, N. A. (2006). Ferredoxin-Thioredoxin System Plays a Key Role in Plant Response to Oxidative Stress. The Plant Cell, 18(8), 1782-1782. doi:10.1105/tpc.106.180810 | es_ES |
dc.description.references | Balmer, Y., Vensel, W. H., Cai, N., Manieri, W., Schurmann, P., Hurkman, W. J., & Buchanan, B. B. (2006). A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proceedings of the National Academy of Sciences, 103(8), 2988-2993. doi:10.1073/pnas.0511040103 | es_ES |
dc.description.references | Swaisgood, H. E. (2005). The importance of disulfide bridging. Biotechnology Advances, 23(1), 71-73. doi:10.1016/j.biotechadv.2004.09.004 | es_ES |
dc.description.references | Visschers, R. W., & de Jongh, H. H. J. (2005). Disulphide bond formation in food protein aggregation and gelation. Biotechnology Advances, 23(1), 75-80. doi:10.1016/j.biotechadv.2004.09.005 | es_ES |
dc.description.references | Bulaj, G. (2005). Formation of disulfide bonds in proteins and peptides. Biotechnology Advances, 23(1), 87-92. doi:10.1016/j.biotechadv.2004.09.002 | es_ES |
dc.description.references | Kühle, E., & Klauke, E. (1977). Fluorinated Isocyanates and Their Derivatives as Intermediates for Biologically Active Compounds. Angewandte Chemie International Edition in English, 16(11), 735-742. doi:10.1002/anie.197707353 | es_ES |
dc.description.references | Firouzabadi, H., Iranpoor, N., Parham, H., Sardarian, A., & Toofan, J. (1984). Oxidation of Thiols to Their Disulfides with Bis Trinitratocerium (IV)l Chromate [Ce(NO3)312CrO4and Pyridinum Chlorochromate. Synthetic Communications, 14(8), 717-724. doi:10.1080/00397918408059586 | es_ES |
dc.description.references | Firouzabadi, H., Naderi, M., Sardarian, A., & Vessal, B. (1983). The Facile Oxidation of Thiols to Disulfides with Bis(2,2′-Bipyridyl) Copper-(II) Permanganate. Synthetic Communications, 13(7), 611-615. doi:10.1080/00397918308059536 | es_ES |
dc.description.references | Noureldin, N. A., Caldwell, M., Hendry, J., & Lee, D. G. (1998). Heterogeneous Permanganate Oxidation of Thiols. Synthesis, 1998(11), 1587-1589. doi:10.1055/s-1998-2190 | es_ES |
dc.description.references | Wallace, T. J. (1966). Reactions of Thiols with Metals. I. Low-Temperature Oxidation by Metal Oxides1. The Journal of Organic Chemistry, 31(4), 1217-1221. doi:10.1021/jo01342a056 | es_ES |
dc.description.references | Firouzabadi, H., Iranpoor, N., Kiaeezadeh, F., & Toofan, J. (1986). Chromium(VI) based oxidants-1. Tetrahedron, 42(2), 719-725. doi:10.1016/s0040-4020(01)87476-7 | es_ES |
dc.description.references | McKillop, A., Koyunçu, D., Krief, A., Dumont, W., Renier, P., & Trabelsi, M. (1990). Efficicient, high yield, oxidation of thiols and selenols to disulphides and diselenides. Tetrahedron Letters, 31(35), 5007-5010. doi:10.1016/s0040-4039(00)97790-6 | es_ES |
dc.description.references | Ramesha, A. R., & Chandrasekaran, S. (1994). A facile entry to macrocyclic disulfides: an efficient synthesis of redox-switched crown ethers. The Journal of Organic Chemistry, 59(6), 1354-1357. doi:10.1021/jo00085a025 | es_ES |
dc.description.references | Ramadas, K., & Srinivasan, N. (1995). Sodium Chlorite - Yet Another Oxidant for Thiols to Disulphides. Synthetic Communications, 25(2), 227-234. doi:10.1080/00397919508010811 | es_ES |
dc.description.references | Pryor, W. A., Church, D. F., Govindan, C. K., & Crank, G. (1982). Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. The Journal of Organic Chemistry, 47(1), 156-159. doi:10.1021/jo00340a038 | es_ES |
dc.description.references | Iranpoor, N., Firouzabadi, H., & Zolfigol, M. A. (1998). Dinitrogen Tetroxide Copper Nitrate Complex [Cu(NO3)2.N2O4] As a New Nitrosating Agent for Catalytic Coupling of Thiols via Thionitrite. Synthetic Communications, 28(2), 367-375. doi:10.1080/00397919808005729 | es_ES |
dc.description.references | Wu, X., Rieke, R. D., & Zhu, L. (1996). Preparation of Disulfides by the Oxidation of Thiols Using Bromine. Synthetic Communications, 26(1), 191-196. doi:10.1080/00397919608003879 | es_ES |
dc.description.references | Ali, M. H., & McDermott, M. (2002). Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support. Tetrahedron Letters, 43(35), 6271-6273. doi:10.1016/s0040-4039(02)01220-0 | es_ES |
dc.description.references | Khazaei, A., Zolfigol, M. A., & Rostami, A. (2004). 1,3-Dibromo-5,5-Dimethylhydantoin [DBDMH] as an Efficient and Selective Agent for the Oxidation of Thiols to Disulfides in Solution or under Solvent-Free Conditions. Synthesis, (18), 2959-2961. doi:10.1055/s-2004-834919 | es_ES |
dc.description.references | Joshi, A. V., Bhusare, S., Baidossi, M., Qafisheh, N., & Sasson, Y. (2005). Oxidative coupling of thiols to disulfides using a solid anhydrous potassium phosphate catalyst. Tetrahedron Letters, 46(20), 3583-3585. doi:10.1016/j.tetlet.2005.03.040 | es_ES |
dc.description.references | Patel, S., & Mishra, B. K. (2004). Cetyltrimethylammonium dichromate: a mild oxidant for coupling amines and thiols. Tetrahedron Letters, 45(7), 1371-1372. doi:10.1016/j.tetlet.2003.12.068 | es_ES |
dc.description.references | Leino, R., & Lönnqvist, J.-E. (2004). A very simple method for the preparation of symmetrical disulfides. Tetrahedron Letters, 45(46), 8489-8491. doi:10.1016/j.tetlet.2004.09.100 | es_ES |
dc.description.references | Delaude, L., & Laszlo, P. (1996). A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)1. The Journal of Organic Chemistry, 61(18), 6360-6370. doi:10.1021/jo960633p | es_ES |
dc.description.references | Peskin, A. V., & Winterbourn, C. C. (2001). Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radical Biology and Medicine, 30(5), 572-579. doi:10.1016/s0891-5849(00)00506-2 | es_ES |
dc.description.references | Akdag, A., Webb, T., & Worley, S. D. (2006). Oxidation of thiols to disulfides with monochloro poly(styrenehydantoin) beads. Tetrahedron Letters, 47(21), 3509-3510. doi:10.1016/j.tetlet.2006.03.105 | es_ES |
dc.description.references | Kirihara, M., Asai, Y., Ogawa, S., Noguchi, T., Hatano, A., & Hirai, Y. (2007). A Mild and Environmentally Benign Oxidation of Thiols to Disulfides. Synthesis, 2007(21), 3286-3289. doi:10.1055/s-2007-990800 | es_ES |
dc.description.references | LIU, K.-T., & TONG, Y.-C. (1978). A Facile Conversion of Thiols to Disulfides. Synthesis, 1978(09), 669-670. doi:10.1055/s-1978-24844 | es_ES |
dc.description.references | Rao, T. V., Sain, B., Murthy, P. S., Rao, T. S. R. P., Joshi, G. C., & Jain, A. K. (1997). Iron(III )–Ethylenediaminetetraacetic AcidMediated Oxidation of Thiols to Disulfides with MolecularOxygen†. Journal of Chemical Research, (8), 300-301. doi:10.1039/a702061i | es_ES |
dc.description.references | Walters, M. A., Chaparro, J., Siddiqui, T., Williams, F., Ulku, C., & Rheingold, A. L. (2006). The formation of disulfides by the [Fe(nta)Cl2]2− catalyzed air oxidation of thiols and dithiols. Inorganica Chimica Acta, 359(12), 3996-4000. doi:10.1016/j.ica.2006.03.043 | es_ES |
dc.description.references | Rao, T. V., Rao, K. N., Jain, S. L., & Sain, B. (2002). COBALT PHTHALOCYANINE MEDIATED AEROBIC OXIDATION OF THIOLS: A SIMPLE AND CONVENIENT PREPARATION OF DISULPHIDES. Synthetic Communications, 32(8), 1151-1157. doi:10.1081/scc-120003604 | es_ES |
dc.description.references | Simándi, L. I., Németh, S., & Rumelis, N. (1987). Cobalt(II) ion catalyzed oxidation of o-substituted anilines with molecular oxygen. Journal of Molecular Catalysis, 42(3), 357-360. doi:10.1016/0304-5102(87)85011-3 | es_ES |
dc.description.references | S. Uemura , Comprehensive Organic Synthesis, B. M. Trost, I. Fleming Ed., Pergamon Press, New York, 1991, Vol 7., 757 | es_ES |
dc.description.references | Hashemi, M. M., & Karimi-Jaberi, Z. (2004). Oxidation of Thiols to Disulfides by Oxygen in Presence of Cobalt(II) and Manganese(II) Salts of 4-Aminobenzoic Acid Supported on Silica Gel. Monatshefte f�r Chemie / Chemical Monthly, 135(1), 41-43. doi:10.1007/s00706-003-0102-5 | es_ES |
dc.description.references | Cervilla, A., Corma, A., Fornes, V., Llopis, E., Palanca, P., Rey, F., & Ribera, A. (1994). Intercalation of [MoVIO2(O2CC(S)Ph2)2]2- in a Zn(II)-Al(III) Layered Double Hydroxide Host: A Strategy for the Heterogeneous Catalysis of the Air Oxidation of Thiols. Journal of the American Chemical Society, 116(4), 1595-1596. doi:10.1021/ja00083a065 | es_ES |
dc.description.references | Saxena, A., Kumar, A., & Mozumdar, S. (2007). Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 269(1-2), 35-40. doi:10.1016/j.molcata.2006.12.042 | es_ES |
dc.description.references | Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u | es_ES |
dc.description.references | Arcadi, A. (2008). Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 108(8), 3266-3325. doi:10.1021/cr068435d | es_ES |
dc.description.references | Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x | es_ES |
dc.description.references | Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430g | es_ES |
dc.description.references | Fürstner, A. (2009). Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chemical Society Reviews, 38(11), 3208. doi:10.1039/b816696j | es_ES |
dc.description.references | Shen, H. C. (2008). Recent advances in syntheses of heterocycles and carbocycles via homogeneous gold catalysis. Part 1: Heteroatom addition and hydroarylation reactions of alkynes, allenes, and alkenes. Tetrahedron, 64(18), 3885-3903. doi:10.1016/j.tet.2008.01.081 | es_ES |
dc.description.references | Hashmi, A. S. K., & Rudolph, M. (2008). Gold catalysis in total synthesis. Chemical Society Reviews, 37(9), 1766. doi:10.1039/b615629k | es_ES |
dc.description.references | Muzart, J. (2008). Gold-catalysed reactions of alcohols: isomerisation, inter- and intramolecular reactions leading to C–C and C–heteroatom bonds. Tetrahedron, 64(25), 5815-5849. doi:10.1016/j.tet.2008.04.018 | es_ES |
dc.description.references | Hutchings, G. J. (2008). Supported gold and gold palladium catalysts for selective chemical synthesis. Catalysis Today, 138(1-2), 9-14. doi:10.1016/j.cattod.2008.04.029 | es_ES |
dc.description.references | Widenhoefer, R. A., & Han, X. (2006). Gold-Catalyzed Hydroamination of C–C Multiple Bonds. European Journal of Organic Chemistry, 2006(20), 4555-4563. doi:10.1002/ejoc.200600399 | es_ES |
dc.description.references | Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8 | es_ES |
dc.description.references | Haruta, M. (1997). Catalysis Surveys from Japan, 1(1), 61-73. doi:10.1023/a:1019068728295 | es_ES |
dc.description.references | A. Corma , H.Garcia, Supported gold nanoparticles as oxidation catalysts from Nanoparticles and Catalysis, 2008, 389. Editor: D. Astruc | es_ES |
dc.description.references | C. Della Pina , E.Falletta, M.Rossi, Gold nanoparticles-catalyzed oxidations in organic chemistry, ibid, p. 427 | es_ES |
dc.description.references | C. Louis , Gold nanoparticles: recent advances in CO oxidation, ibid, pp. 475–503 | es_ES |
dc.description.references | Carrettin, S., Concepción, P., Corma, A., López Nieto, J. M., & Puntes, V. F. (2004). Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude. Angewandte Chemie International Edition, 43(19), 2538-2540. doi:10.1002/anie.200353570 | es_ES |
dc.description.references | Budroni, G., & Corma, A. (2006). Gold–Organic–Inorganic High-Surface-Area Materials as Precursors of Highly Active Catalysts. Angewandte Chemie International Edition, 45(20), 3328-3331. doi:10.1002/anie.200600552 | es_ES |
dc.description.references | The pair reduced l-glutathione/oxidized l-glutathione (G–SH/G–SS–G) is the major intracellular redox buffer | es_ES |
dc.description.references | Zhang, X., & Corma, A. (2008). Supported Gold(III) Catalysts for Highly Efficient Three-Component Coupling Reactions. Angewandte Chemie International Edition, 47(23), 4358-4361. doi:10.1002/anie.200800098 | es_ES |
dc.description.references | Jenner, E. L., & Lindsey, R. V. (1961). Syntheses by Free-radical Reactions. XIII. Reactions of Thiyl Radicals with Olefins. Journal of the American Chemical Society, 83(8), 1911-1915. doi:10.1021/ja01469a031 | es_ES |
dc.description.references | Handbook of Chemistry and Physics, 82nd ed. CRC Press, New York, 2001, p 9–52–9–63 | es_ES |
dc.description.references | Buettner, G. R. (1987). Spin Trapping: ESR parameters of spin adducts 1474 1528V. Free Radical Biology and Medicine, 3(4), 259-303. doi:10.1016/s0891-5849(87)80033-3 | es_ES |
dc.description.references | Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401 | es_ES |
dc.description.references | Cullis, C. F., Hopton, J. D., Swan, C. J., & Trimm, D. L. (2007). Oxidation of thiols in gas-liquid systems. II. Reaction in the presence of added metal catalysts. Journal of Applied Chemistry, 18(11), 335-339. doi:10.1002/jctb.5010181105 | es_ES |
dc.description.references | the amount of water formed was estimated by the Karl-Fisher method | es_ES |
dc.description.references | Collet, J.-F., & Bardwell, J. C. A. (2002). Disulfides out of thin air. Nature Structural Biology, 9(1), 2-3. doi:10.1038/nsb0102-2 | es_ES |