- -

MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst

Show full item record

García Cirujano, F.; Llabrés I Xamena, FX.; Corma Canós, A. (2012). MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Transactions. 41:4249-4254. doi:10.1039/c2dt12480g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62423

Files in this item

Item Metadata

Title: MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
A bifunctional MOF catalyst containing coordinatively unsaturated Cr3+ sites and palladium nanoparticles (Pd@MIL-101) has been used for the cyclization of citronellal to isopulegol and for the one-pot tandem isomerizatio ...[+]
Subjects: METAL-ORGANIC FRAMEWORKS , IR-BETA ZEOLITE , HETEROGENEOUS CATALYST , ACID , LEWIS , TRANSFORMATION , CARBOXYLATE , SITES , WATER , STEP
Copyrigths: Reserva de todos los derechos
Source:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/c2dt12480g
Publisher:
Royal Society of Chemistry
Thanks:
Financial support by Ministerio de Educacion y Ciencia e Innovacion (Project MIYCIN, CSD2009-00050; PROGRAMA CONSOLIDER. INGENIO 2009), Generalidad Valenciana (GV PROMETEO/2008/130) and the CSIC (Proyectos Intramurales ...[+]
Type: Artículo

References

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f [+]
Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f

Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p

Banerjee, M., Das, S., Yoon, M., Choi, H. J., Hyun, M. H., Park, S. M., … Kim, K. (2009). Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal−Organic Porous Materials. Journal of the American Chemical Society, 131(22), 7524-7525. doi:10.1021/ja901440g

GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010

Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y

Cho, S.-H., Ma, B., Nguyen, S. T., Hupp, J. T., & Albrecht-Schmitt, T. E. (2006). A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun., (24), 2563-2565. doi:10.1039/b600408c

Zhang, X., Llabrés i Xamena, F. X., & Corma, A. (2009). Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 265(2), 155-160. doi:10.1016/j.jcat.2009.04.021

Meilikhov, M., Yusenko, K., Esken, D., Turner, S., Van Tendeloo, G., & Fischer, R. A. (2010). Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 2010(24), 3701-3714. doi:10.1002/ejic.201000473

Henschel, A., Gedrich, K., Kraehnert, R., & Kaskel, S. (2008). Catalytic properties of MIL-101. Chemical Communications, (35), 4192. doi:10.1039/b718371b

Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d

Wu, P., Wang, J., Li, Y., He, C., Xie, Z., & Duan, C. (2011). Luminescent Sensing and Catalytic Performances of a Multifunctional Lanthanide-Organic Framework Comprising a Triphenylamine Moiety. Advanced Functional Materials, 21(14), 2788-2794. doi:10.1002/adfm.201100115

Pan, Y., Yuan, B., Li, Y., & He, D. (2010). Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 46(13), 2280. doi:10.1039/b922061e

Climent, M. J., Corma, A., Guil-López, R., Iborra, S., & Primo, J. (1998). Use of Mesoporous MCM-41 Aluminosilicates as Catalysts in the Preparation of Fine Chemicals. Journal of Catalysis, 175(1), 70-79. doi:10.1006/jcat.1998.1970

Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A: Chemical, 182-183, 327-342. doi:10.1016/s1381-1169(01)00501-5

Boronat, M., Climent, M. J., Corma, A., Iborra, S., Montón, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z

Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Corma, A., & Renz, M. (2004). Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl–ene reaction. Chem. Commun., (5), 550-551. doi:10.1039/b313738d

Iosif, F., Coman, S., Pârvulescu, V., Grange, P., Delsarte, S., Vos, D. D., & Jacobs, P. (2004). Ir-Beta zeolite as a heterogeneous catalyst for the one-pot transformation of citronellal to menthol. Chem. Commun., (11), 1292-1293. doi:10.1039/b403692a

Neaţu, F., Coman, S., Pârvulescu, V. I., Poncelet, G., De Vos, D., & Jacobs, P. (2009). Heterogeneous Catalytic Transformation of Citronellal to Menthol in a Single Step on Ir-Beta Zeolite Catalysts. Topics in Catalysis, 52(9), 1292-1300. doi:10.1007/s11244-009-9270-9

MERTENS, P., VERPOORT, F., PARVULESCU, A., & DEVOS, D. (2006). Pt/H-beta zeolites as productive bifunctional catalysts for the one-step citronellal-to-menthol conversion. Journal of Catalysis, 243(1), 7-13. doi:10.1016/j.jcat.2006.06.017

Da Silva Rocha, K. A., Robles-Dutenhefner, P. A., Sousa, E. M. B., Kozhevnikova, E. F., Kozhevnikov, I. V., & Gusevskaya, E. V. (2007). Pd–heteropoly acid as a bifunctional heterogeneous catalyst for one-pot conversion of citronellal to menthol. Applied Catalysis A: General, 317(2), 171-174. doi:10.1016/j.apcata.2006.10.019

Trasarti, A. F., Marchi, A. J., & Apesteguı́a, C. R. (2004). Highly selective synthesis of menthols from citral in a one-step process. Journal of Catalysis, 224(2), 484-488. doi:10.1016/j.jcat.2004.03.016

TRASARTI, A., MARCHI, A., & APESTEGUIA, C. (2007). Design of catalyst systems for the one-pot synthesis of menthols from citral. Journal of Catalysis, 247(2), 155-165. doi:10.1016/j.jcat.2007.01.016

Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220

Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b

Ravon, U., Chaplais, G., Chizallet, C., Seyyedi, B., Bonino, F., Bordiga, S., … Farrusseng, D. (2010). Investigation of Acid Centers in MIL-53(Al, Ga) for Brønsted-Type Catalysis: In Situ FTIR and Ab Initio Molecular Modeling. ChemCatChem, 2(10), 1235-1238. doi:10.1002/cctc.201000055

Vimont, A., Leclerc, H., Maugé, F., Daturi, M., Lavalley, J.-C., Surblé, S., … Férey, G. (2007). Creation of Controlled Brønsted Acidity on a Zeotypic Mesoporous Chromium(III) Carboxylate by Grafting Water and Alcohol Molecules. The Journal of Physical Chemistry C, 111(1), 383-388. doi:10.1021/jp064686e

[-]

This item appears in the following Collection(s)

Show full item record