The Lancet Oncology. (2009). Beauty and the beast. The Lancet Oncology, 10(9), 835. doi:10.1016/s1470-2045(09)70243-8
Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103
Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, 90(14), 6666-6670. doi:10.1073/pnas.90.14.6666
[+]
The Lancet Oncology. (2009). Beauty and the beast. The Lancet Oncology, 10(9), 835. doi:10.1016/s1470-2045(09)70243-8
Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103
Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, 90(14), 6666-6670. doi:10.1073/pnas.90.14.6666
Rochette, P. J. (2003). UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Research, 31(11), 2786-2794. doi:10.1093/nar/gkg402
Mitchell, D. L., Fernandez, A. A., Nairn, R. S., Garcia, R., Paniker, L., Trono, D., … Gimenez-Conti, I. (2010). Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proceedings of the National Academy of Sciences, 107(20), 9329-9334. doi:10.1073/pnas.1000324107
Douki, T., Reynaud-Angelin, A., Cadet, J., & Sage, E. (2003). Bipyrimidine Photoproducts Rather than Oxidative Lesions Are the Main Type of DNA Damage Involved in the Genotoxic Effect of Solar UVA Radiation†. Biochemistry, 42(30), 9221-9226. doi:10.1021/bi034593c
Young, A. R., Potten, C. S., Nikaido, O., Parsons, P. G., Boenders, J., Ramsden, J. M., & Chadwick, C. A. (1998). Human Melanocytes and Keratinocytes Exposed to UVB or UVA In Vivo Show Comparable Levels of Thymine Dimers. Journal of Investigative Dermatology, 111(6), 936-940. doi:10.1046/j.1523-1747.1998.00435.x
Cooke, M. S., Evans, M. D., Patel, K., Barnard, A., Lunec, J., Burd, R. M., & Hutchinson, P. E. (2001). Induction and Excretion of Ultraviolet-Induced 8-Oxo-2′-deoxyguanosine and Thymine Dimers In Vivo: Implications for PUVA. Journal of Investigative Dermatology, 116(2), 281-285. doi:10.1046/j.1523-1747.2001.01251.x
Mouret, S., Philippe, C., Gracia-Chantegrel, J., Banyasz, A., Karpati, S., Markovitsi, D., & Douki, T. (2010). UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism? Organic & Biomolecular Chemistry, 8(7), 1706. doi:10.1039/b924712b
Jiang, Y., Rabbi, M., Kim, M., Ke, C., Lee, W., Clark, R. L., … Marszalek, P. E. (2009). UVA Generates Pyrimidine Dimers in DNA Directly. Biophysical Journal, 96(3), 1151-1158. doi:10.1016/j.bpj.2008.10.030
Tyrrell, R. M., & Keyse, S. M. (1990). New trends in photobiology the interaction of UVA radiation with cultured cells. Journal of Photochemistry and Photobiology B: Biology, 4(4), 349-361. doi:10.1016/1011-1344(90)85014-n
Besaratinia, A., Synold, T. W., Chen, H.-H., Chang, C., Xi, B., Riggs, A. D., & Pfeifer, G. P. (2005). DNA lesions induced by UV A1 and B radiation in human cells: Comparative analyses in the overall genome and in the p53 tumor suppressor gene. Proceedings of the National Academy of Sciences, 102(29), 10058-10063. doi:10.1073/pnas.0502311102
Kuluncsics, Z., Perdiz, D., Brulay, E., Muel, B., & Sage, E. (1999). Wavelength dependence of ultraviolet-induced DNA damage distribution: Involvement of direct or indirect mechanisms and possible artefacts. Journal of Photochemistry and Photobiology B: Biology, 49(1), 71-80. doi:10.1016/s1011-1344(99)00034-2
Cadet, J., Courdavault, S., Ravanat, J.-L., & Douki, T. (2005). UVB and UVA radiation-mediated damage to isolated and cellular DNA. Pure and Applied Chemistry, 77(6), 947-961. doi:10.1351/pac200577060947
Costalat, R., Blais, J., Ballini, J.-P., Moysan, A., Cadet, J., Chalvet, O., & Vigny, P. (1990). FORMATION OF CYCLOBUTANE THYMINE DIMERS PHOTOSENSITIZED BY PYRIDOPSORALENS: A TRIPLET-TRIPLET ENERGY TRANSFER MECHANISM. Photochemistry and Photobiology, 51(3), 255-262. doi:10.1111/j.1751-1097.1990.tb01709.x
Moysan, A., Viari, A., Vigny, P., Voituriez, L., Cadet, J., Moustacchi, E., & Sage, E. (1991). Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: quantitative and qualitative distribution within DNA. Biochemistry, 30(29), 7080-7088. doi:10.1021/bi00243a007
Stern, R. S., Liebman, E. J., & Väkevä, L. (1998). Oral Psoralen and Ultraviolet-A Light (PUVA) Treatment of Psoriasis and Persistent Risk of Nonmelanoma Skin Cancer. JNCI: Journal of the National Cancer Institute, 90(17), 1278-1284. doi:10.1093/jnci/90.17.1278
Young, A. R. (1990). Photocarcinogenicity of psoralens used in PUVA treatment: Present status in mouse and man. Journal of Photochemistry and Photobiology B: Biology, 6(1-2), 237-247. doi:10.1016/1011-1344(90)85093-c
Spratt, T. E., Schultz, S. S., Levy, D. E., Chen, D., Schlüter, G., & Williams, G. M. (1999). Different Mechanisms for the Photoinduced Production of Oxidative DNA Damage by Fluoroquinolones Differing in Photostability. Chemical Research in Toxicology, 12(9), 809-815. doi:10.1021/tx980224j
Sauvaigo, S., Douki, T., Odin, F., Caillat, S., Ravanat, J.-L., & Cadet, J. (2001). Analysis of Fluoroquinolone-mediated Photosensitization of 2′-Deoxyguanosine, Calf Thymus and Cellular DNA: Determination of Type-I, Type-II and Triplet–Triplet Energy Transfer Mechanism Contribution¶. Photochemistry and Photobiology, 73(3), 230. doi:10.1562/0031-8655(2001)073<0230:aofmpo>2.0.co;2
Cuquerella, M. C., Boscá, F., Miranda, M. A., Belvedere, A., Catalfo, A., & de Guidi, G. (2003). Photochemical Properties of Ofloxacin Involved in Oxidative DNA Damage: A Comparison with Rufloxacin. Chemical Research in Toxicology, 16(4), 562-570. doi:10.1021/tx034006o
Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x
Mäkinen, M., Forbes, P. D., & Stenbäck, F. (1997). Quinolone antibacterials: A new class of photochemical carcinogens. Journal of Photochemistry and Photobiology B: Biology, 37(3), 182-187. doi:10.1016/s1011-1344(96)07425-8
Klecak, G., Urbach, F., & Urwyler, H. (1997). Fluoroquinolone antibacterials enhance UVA-induced skin tumors. Journal of Photochemistry and Photobiology B: Biology, 37(3), 174-181. doi:10.1016/s1011-1344(96)07424-6
Johnson, B. E., Gibbs, N. K., & Ferguson, J. (1997). Quinolone antibiotic with potential to photosensitize skin tumorigenesis. Journal of Photochemistry and Photobiology B: Biology, 37(3), 171-173. doi:10.1016/s1011-1344(96)07423-4
Itoh, T., Miyauchi-Hashimoto, H., Sugihara, A., Tanaka, K., & Horio, T. (2005). The Photocarcinogenesis of Antibiotic Lomefloxacin and UVA Radiation Is Enhanced in Xeroderma Pigmentosum Group A Gene-Deficient Mice. Journal of Investigative Dermatology, 125(3), 554-559. doi:10.1111/j.0022-202x.2005.23862.x
Sandros, K., Haglid, F., Ryhage, R., Ryhage, R., & Stevens, R. (1964). Transfer of Triplet State Energy in Fluid Solutions. III. Reversible Energy Transfer. Acta Chemica Scandinavica, 18, 2355-2374. doi:10.3891/acta.chem.scand.18-2355
Encinas, S., Belmadoui, N., Climent, M. J., Gil, S., & Miranda, M. A. (2004). Photosensitization of Thymine Nucleobase by Benzophenone Derivatives as Models for Photoinduced DNA Damage: Paterno−Büchi vs Energy and Electron Transfer Processes. Chemical Research in Toxicology, 17(7), 857-862. doi:10.1021/tx034249g
Morrison, H., & Kleopfer, R. (1968). Organic photochemistry. VIII. Solvent effects on liquid-phase photodimerization of dimethylthymine. Journal of the American Chemical Society, 90(18), 5037-5038. doi:10.1021/ja01020a055
Wagner, P. J., & Bucheck, D. J. (1970). Photodimerization of thymine and uracil in acetonitrile. Journal of the American Chemical Society, 92(1), 181-185. doi:10.1021/ja00704a030
Cadet, J., Voituriez, L., Hruska, F. E., Kan, L.-S., Leeuw, F. A. A. M. de, & Altona, C. (1985). Characterization of thymidine ultraviolet photoproducts. Cyclobutane dimers and 5,6-dihydrothymidines. Canadian Journal of Chemistry, 63(11), 2861-2868. doi:10.1139/v85-477
VARGHESE, A. J. (1972). ACETONE-SENSITIZED DIMERIZATION OF CYTOSINE DERIVATIVES. Photochemistry and Photobiology, 15(2), 113-118. doi:10.1111/j.1751-1097.1972.tb06232.x
LAMOLA, A. A. (1968). EXCITED STATE PRECURSORS OF THYMINE PHOTODIMERS. Photochemistry and Photobiology, 7(6), 619-632. doi:10.1111/j.1751-1097.1968.tb08044.x
Greenstock, C. L., & Johns, H. E. (1968). Photosensitized dimerization of pyrimidines. Biochemical and Biophysical Research Communications, 30(1), 21-27. doi:10.1016/0006-291x(68)90706-7
Aliwell, S. R., Martincigh, B. S., & Salter, L. F. (1993). Para-aminobenzoic acid-photosensitized dimerization of thymine I. In DNA-related model systems. Journal of Photochemistry and Photobiology A: Chemistry, 71(2), 137-146. doi:10.1016/1010-6030(93)85065-g
Kleopfer, R., & Morrison, H. (1972). Organic photochemistry. XVII. Solution-phase photodimerization of dimethylthymine. Journal of the American Chemical Society, 94(1), 255-264. doi:10.1021/ja00756a045
Chouini-Lalanne, N., Defais, M., & Paillous, N. (1998). Nonsteroidal antiinflammatory drug-photosensitized formation of pyrimidine dimer in DNA. Biochemical Pharmacology, 55(4), 441-446. doi:10.1016/s0006-2952(97)00511-x
Meistrich, M. L., & Lamola, A. A. (1972). Triplet-state sensitization of thymine photodimerization in bacteriophage T4. Journal of Molecular Biology, 66(1), 83-95. doi:10.1016/s0022-2836(72)80007-x
Lamola, A. A., Guéron, M., Yamane, T., Eisinger, J., & Shulman, R. G. (1967). Triplet State of DNA. The Journal of Chemical Physics, 47(7), 2210-2217. doi:10.1063/1.1703293
HøNNÅS, P. I., & STEEN, H. B. (1970). X-RAY- AND U.V.-INDUCED EXCITATION OF ADENINE, THYMINE AND THE RELATED NUCLEOSIDES AND NUCLEOTIDES IN SOLUTION AT 77°K. Photochemistry and Photobiology, 11(2), 67-76. doi:10.1111/j.1751-1097.1970.tb05972.x
Wilucki, I. vo., Matthäs, H., & Krauch, C. H. (1967). PHOTOSENSIBILISIERTE CYCLODIMERISATION VON THYMIN IN LÖSUNG. Photochemistry and Photobiology, 6(7), 497-500. doi:10.1111/j.1751-1097.1967.tb08750.x
Elad, D., Krüger, C., & Schmidt, G. M. J. (1967). THE PHOTOSENSITIZED SOLUTION DIMERIZATTION OF DIMETHYLURACIL AND DIMETHYLTHYMINE. FOUR PHOTODIMERS OF DIMETHYLURACIL. Photochemistry and Photobiology, 6(7), 495-496. doi:10.1111/j.1751-1097.1967.tb08749.x
JENNINGS, B. H., PASTRA, S.-C., & WELLINGTON, J. L. (1970). PHOTOSENSITIZED DIMERIZATION OF THYMINE. Photochemistry and Photobiology, 11(4), 215-226. doi:10.1111/j.1751-1097.1970.tb05991.x
Ben-Hur, E., Elad, D., & Ben-Ishai, R. (1967). The photosensitized dimerization of thymidine in solution. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 149(2), 355-360. doi:10.1016/0005-2787(67)90163-3
Delatour, T., Douki, T., D’Ham, C., & Cadet, J. (1998). Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation. Journal of Photochemistry and Photobiology B: Biology, 44(3), 191-198. doi:10.1016/s1011-1344(98)00142-0
Douki, T., Court, M., & Cadet, J. (2000). Electrospray–mass spectrometry characterization and measurement of far-UV-induced thymine photoproducts. Journal of Photochemistry and Photobiology B: Biology, 54(2-3), 145-154. doi:10.1016/s1011-1344(00)00009-9
Belmadoui, N., Encinas, S., Climent, M. J., Gil, S., & Miranda, M. A. (2006). Intramolecular Interactions in the Triplet Excited States of Benzophenone–Thymine Dyads. Chemistry - A European Journal, 12(2), 553-561. doi:10.1002/chem.200500345
Prakash, G., & Falvey, D. E. (1995). Model studies of the (6-4) photoproduct DNA photolyase: Synthesis and photosensitized splitting of a thymine-5,6-oxetane. Journal of the American Chemical Society, 117(45), 11375-11376. doi:10.1021/ja00150a050
Nakatani, K., Yoshida, T., & Saito, I. (2002). Photochemistry of Benzophenone Immobilized in a Major Groove of DNA: Formation of Thermally Reversible Interstrand Cross-link. Journal of the American Chemical Society, 124(10), 2118-2119. doi:10.1021/ja017611r
Varghese, A. J. (1975). PHOTOCYCLOADDITION OF ACETONE TO URACIL AND CYTOSINE. Photochemistry and Photobiology, 21(3), 147-151. doi:10.1111/j.1751-1097.1975.tb06644.x
Trzcionka, J., Lhiaubet-Vallet, V., Paris, C., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 8(4), 402-407. doi:10.1002/cbic.200600394
Lhiaubet-Vallet, V., Encinas, S., & Miranda, M. A. (2005). Excited State Enantiodifferentiating Interactions between a Chiral Benzophenone Derivative and Nucleosides. Journal of the American Chemical Society, 127(37), 12774-12775. doi:10.1021/ja053518h
Umlas, M. E., Franklin, W. A., Chan, G. L., & Haseltine, W. A. (1985). ULTRAVIOLET LIGHT IRRADIATION OF DEFINED-SEQUENCE DNA UNDER CONDITIONS OF CHEMICAL PHOTOSENSITIZATION. Photochemistry and Photobiology, 42(3), 265-273. doi:10.1111/j.1751-1097.1985.tb08941.x
Liu, F.-T., & Yang, N. C. (1978). Photochemistry of cytosine derivatives. 1. Photochemistry of thymidylyl-(3’ →5’)-deoxycytidine. Biochemistry, 17(23), 4865-4876. doi:10.1021/bi00616a003
Mu, W., Han, Q., Luo, Z., & Wang, Y. (2006). Production of cis–syn thymine–thymine cyclobutane dimer oligonucleotide in the presence of acetone photosensitizer. Analytical Biochemistry, 353(1), 117-123. doi:10.1016/j.ab.2006.03.007
Kaneko, M., Matsuyama, A., & Nagata, C. (1979). Photosensitized formation of thymine dimers in DNA by tyramine, tyrosine and tyrosine containing peptides. Nucleic Acids Research, 6(3), 1177-1187. doi:10.1093/nar/6.3.1177
Logue, M. W., & Leonard, N. J. (1972). Synthetic spectroscopic models related to coenzymes and base pairs. IX. «Abbreviated» dinucleosides of thymidine and deoxyuridine and their photoproducts. Journal of the American Chemical Society, 94(8), 2842-2846. doi:10.1021/ja00763a050
KONING, T. M. G., SOEST, J. J. G., & KAPTEIN, R. (1991). NMR studies of bipyrimidine cyclobutane photodimers. European Journal of Biochemistry, 195(1), 29-40. doi:10.1111/j.1432-1033.1991.tb15672.x
Leonard, N. J., McCredie, R. S., Logue, M. W., & Cundall, R. L. (1973). Synthetic spectroscopic models related to coenzymes and base pairs. XI. Solid state ultraviolet irradiation of 1,1’-trimethylenebisthymine and photosensitized irradiation of 1,1’-polymethylenebisthymines. Journal of the American Chemical Society, 95(7), 2320-2324. doi:10.1021/ja00788a036
Rahn, R. O., & Landry, L. C. (1971). Pyrimidine dimer formation in poly (d-dT) and apurinic acid. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 247(2), 197-206. doi:10.1016/0005-2787(71)90670-8
Hosszu, J. L., & Rahn, R. O. (1967). Thymine dimer formation in DNA between 25°C and 100°C. Biochemical and Biophysical Research Communications, 29(3), 327-330. doi:10.1016/0006-291x(67)90457-3
Setlow, R. B., & Carrier, W. L. (1966). Pyrimidine dimers in ultraviolet-irradiated DNA’s. Journal of Molecular Biology, 17(1), 237-254. doi:10.1016/s0022-2836(66)80105-5
Lhiaubet, V., Paillous, N., & Chouini-Lalanne, N. (2001). Comparison of DNA Damage Photoinduced by Ketoprofen, Fenofibric Acid and Benzophenone via Electron and Energy Transfer¶. Photochemistry and Photobiology, 74(5), 670. doi:10.1562/0031-8655(2001)074<0670:coddpb>2.0.co;2
Lhiaubet-Vallet, V., Trzcionka, J., Encinas, S., Miranda, M. A., & Chouini-Lalanne, N. (2004). The Triplet State of aN-Phenylphthalimidine with High Intersystem Crossing Efficiency: Characterization by Transient Absorption Spectroscopy and DNA Sensitization Properties. The Journal of Physical Chemistry B, 108(37), 14148-14153. doi:10.1021/jp0498926
Trzcionka, J., Lhiaubet-Vallet, V., & Chouini-Lalanne, N. (2004). DNA photosensitization by indoprofen ? is DNA damage photoinduced by indoprofen or by its photoproducts? Photochemical & Photobiological Sciences, 3(2), 226. doi:10.1039/b307719e
Bosca, F., Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., & Miranda, M. A. (2006). The Triplet Energy of Thymine in DNA. Journal of the American Chemical Society, 128(19), 6318-6319. doi:10.1021/ja060651g
Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., Bosca, F., & Miranda, M. A. (2007). Triplet Excited Fluoroquinolones as Mediators for Thymine Cyclobutane Dimer Formation in DNA. The Journal of Physical Chemistry B, 111(25), 7409-7414. doi:10.1021/jp070167f
Marrot, L., Belaïdi, J. P., Jones, C., Perez, P., Meunier, J. R., Riou, L., & Sarasin, A. (2003). Molecular Responses to Photogenotoxic Stress Induced by the Antibiotic Lomefloxacin in Human Skin Cells: From DNA Damage to Apoptosis. Journal of Investigative Dermatology, 121(3), 596-606. doi:10.1046/j.1523-1747.2003.12422.x
Lamola, A. A. (1970). Triplet photosensitization and the photobiology of thymine dimers in DNA. Pure and Applied Chemistry, 24(3), 599-610. doi:10.1351/pac197024030599
Lamola, A. A., & Yamane, T. (1967). Sensitized photodimerization of thymine in DNA. Proceedings of the National Academy of Sciences, 58(2), 443-446. doi:10.1073/pnas.58.2.443
Patrick, M. H., & Snow, J. M. (1977). STUDIES ON THYMINE-DERIVED UV PHOTO-PRODUCTS IN DNA—II. A COMPARATIVE ANALYSIS OF DAMAGE CAUSED BY 254 NM IRRADIATION AND TRIPLET-STATE PHOTOSENSITIZATION. Photochemistry and Photobiology, 25(4), 373-384. doi:10.1111/j.1751-1097.1977.tb07356.x
Guillo, L., Blais, J., Vigny, P., & Spassky, A. (1995). SELECTIVE DNA THYMINE DIMERIZATION DURING UVA IRRADIATION IN THE PRESENCE OF A SATURATED PYRIDOPSORALEN. Photochemistry and Photobiology, 61(4), 331-335. doi:10.1111/j.1751-1097.1995.tb08617.x
Robinson, K. S., Traynor, N. J., Moseley, H., Ferguson, J., & Woods, J. A. (2010). Cyclobutane pyrimidine dimers are photosensitised by carprofen plus UVA in human HaCaT cells. Toxicology in Vitro, 24(4), 1126-1132. doi:10.1016/j.tiv.2010.03.007
Marrot, L., & Meunier, J.-R. (2008). Skin DNA photodamage and its biological consequences. Journal of the American Academy of Dermatology, 58(5), S139-S148. doi:10.1016/j.jaad.2007.12.007
Walrant, P., Santos, R., & Charlier, M. (1976). ROLE OF COMPLEX FORMATION IN THE PHOTOSENSITIZED DEGRADATION OF DNA INDUCED BY N‘-FORMYLKYNURENINE. Photochemistry and Photobiology, 24(1), 13-19. doi:10.1111/j.1751-1097.1976.tb06792.x
Bolton, K., Martincigh, B. S., & Salter, L. F. (1992). The potential carcinogenic effect of Uvinul DS49 — a common UV absorber used in cosmetics. Journal of Photochemistry and Photobiology A: Chemistry, 63(2), 241-248. doi:10.1016/1010-6030(92)85142-h
Aliwell, S. R., Martincigh, B. S., & Salter, L. F. (1993). Para-aminobenzoic acid-photosensitized dimerization of thymine II. In pUC19 plasmid DNA. Journal of Photochemistry and Photobiology A: Chemistry, 71(2), 147-153. doi:10.1016/1010-6030(93)85066-h
Desnous, C., Guillaume, D., & Clivio, P. (2010). Spore Photoproduct: A Key to Bacterial Eternal Life. Chemical Reviews, 110(3), 1213-1232. doi:10.1021/cr0781972
Donnellan, J. E., & Setlow, R. B. (1965). Thymine Photoproducts but not Thymine Dimers Found in Ultraviolet-Irradiated Bacterial Spores. Science, 149(3681), 308-310. doi:10.1126/science.149.3681.308
Mantel, C., Chandor, A., Gasparutto, D., Douki, T., Atta, M., Fontecave, M., … Bardet, M. (2008). Combined NMR and DFT Studies for the Absolute Configuration Elucidation of the Spore Photoproduct, a UV-Induced DNA Lesion. Journal of the American Chemical Society, 130(50), 16978-16984. doi:10.1021/ja805032r
Douki, T., Setlow, B., & Setlow, P. (2005). Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochemical & Photobiological Sciences, 4(8), 591. doi:10.1039/b503771a
Douki, T. (2003). Inter-strand photoproducts are produced in high yield within A-DNA exposed to UVC radiation. Nucleic Acids Research, 31(12), 3134-3142. doi:10.1093/nar/gkg408
Nicholson, W. L., Setlow, B., & Setlow, P. (1991). Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers. Proceedings of the National Academy of Sciences, 88(19), 8288-8292. doi:10.1073/pnas.88.19.8288
Rahn, R. O., & Hosszu, J. L. (1969). Influence of relative humidity on the photochemistry of DNA films. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 190(1), 126-131. doi:10.1016/0005-2787(69)90161-0
Douki, T., & Cadet, J. (2003). Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochemical & Photobiological Sciences, 2(4), 433. doi:10.1039/b300173c
Varghese, A. J. (1970). Photochemistry of thymidine in ice. Biochemistry, 9(24), 4781-4787. doi:10.1021/bi00826a023
GROMOVA E. BALANZAT B. GERVAIS R. N, M. (1998). The direct effect of heavy ions and electrons on thymidine in the solid state. International Journal of Radiation Biology, 74(1), 81-97. doi:10.1080/095530098141753
Shaw, A. A., & Cadet, J. (1990). Radical combination processes under the direct effects of gamma radiation on thymidine. Journal of the Chemical Society, Perkin Transactions 2, (12), 2063. doi:10.1039/p29900002063
Nguyen, M. T., Zhang, R., Nam, P.-C., & Ceulemans, A. (2004). Singlet−Triplet Energy Gaps of Gas-Phase RNA and DNA Bases. A Quantum Chemical Study. The Journal of Physical Chemistry A, 108(31), 6554-6561. doi:10.1021/jp0491156
Etinski, M., Fleig, T., & Marian, C. M. (2009). Intersystem Crossing and Characterization of Dark States in the Pyrimidine Nucleobases Uracil, Thymine, and 1-Methylthymine†. The Journal of Physical Chemistry A, 113(43), 11809-11816. doi:10.1021/jp902944a
Serrano-Pérez, J. J., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2007). On the Intrinsic Population of the Lowest Triplet State of Thymine. The Journal of Physical Chemistry B, 111(41), 11880-11883. doi:10.1021/jp0765446
Etinski, M., & Marian, C. M. (2010). Ab initio investigation of the methylation and hydration effects on the electronic spectra of uracil and thymine. Physical Chemistry Chemical Physics, 12(19), 4915. doi:10.1039/b925677f
Merchán, M., Serrano-Andrés, L., Robb, M. A., & Blancafort, L. (2005). Triplet-State Formation along the Ultrafast Decay of Excited Singlet Cytosine. Journal of the American Chemical Society, 127(6), 1820-1825. doi:10.1021/ja044371h
Zhang, R. B., & Eriksson, L. A. (2006). A Triplet Mechanism for the Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA. The Journal of Physical Chemistry B, 110(14), 7556-7562. doi:10.1021/jp060196a
Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p
Roca-Sanjuán, D., Olaso-González, G., González-Ramírez, I., Serrano-Andrés, L., & Merchán, M. (2008). Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers. Journal of the American Chemical Society, 130(32), 10768-10779. doi:10.1021/ja803068n
Abouaf, R., Pommier, J., Dunet, H., Quan, P., Nam, P.-C., & Nguyen, M. T. (2004). The triplet state of cytosine and its derivatives: Electron impact and quantum chemical study. The Journal of Chemical Physics, 121(23), 11668-11674. doi:10.1063/1.1812533
González-Luque, R., Climent, T., González-Ramírez, I., Merchán, M., & Serrano-Andrés, L. (2010). Singlet−Triplet States Interaction Regions in DNA/RNA Nucleobase Hypersurfaces. Journal of Chemical Theory and Computation, 6(7), 2103-2114. doi:10.1021/ct100164m
Fleig, T., Knecht, S., & Hättig, C. (2007). Quantum-Chemical Investigation of the Structures and Electronic Spectra of the Nucleic Acid Bases at the Coupled Cluster CC2 Level. The Journal of Physical Chemistry A, 111(25), 5482-5491. doi:10.1021/jp0669409
Climent, T., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2007). On the intrinsic population of the lowest triplet state of uracil. Chemical Physics Letters, 441(4-6), 327-331. doi:10.1016/j.cplett.2007.05.040
Rasmussen, A. M., Lind, M. C., Kim, S., & Schaefer, H. F. (2010). Hydration of the Lowest Triplet States of the DNA/RNA Pyrimidines. Journal of Chemical Theory and Computation, 6(3), 930-939. doi:10.1021/ct900478c
Boggio-Pasqua, M., Groenhof, G., Schäfer, L. V., Grubmüller, H., & Robb, M. A. (2007). Ultrafast Deactivation Channel for Thymine Dimerization. Journal of the American Chemical Society, 129(36), 10996-10997. doi:10.1021/ja073628j
Merchán, M., González-Luque, R., Climent, T., Serrano-Andrés, L., Rodríguez, E., Reguero, M., & Peláez, D. (2006). Unified Model for the Ultrafast Decay of Pyrimidine Nucleobases. The Journal of Physical Chemistry B, 110(51), 26471-26476. doi:10.1021/jp066874a
Durbeej, B., & Eriksson, L. A. (2002). Reaction mechanism of thymine dimer formation in DNA induced by UV light. Journal of Photochemistry and Photobiology A: Chemistry, 152(1-3), 95-101. doi:10.1016/s1010-6030(02)00180-6
Serrano-Pérez, J. J., González-Ramírez, I., Coto, P. B., Merchán, M., & Serrano-Andrés, L. (2008). Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine. The Journal of Physical Chemistry B, 112(45), 14096-14098. doi:10.1021/jp806794x
Blancafort, L., & Migani, A. (2007). Modeling Thymine Photodimerizations in DNA: Mechanism and Correlation Diagrams. Journal of the American Chemical Society, 129(47), 14540-14541. doi:10.1021/ja074734o
Rahn, R. O., Shulman, R. G., & Longworth, J. W. (1965). The UV-induced triplet state in DNA. Proceedings of the National Academy of Sciences, 53(5), 893-896. doi:10.1073/pnas.53.5.893
Bersohn, R., & Isenberg, I. (1963). On the phosphorescence of DNA. Biochemical and Biophysical Research Communications, 13(3), 205-208. doi:10.1016/0006-291x(63)90282-1
Bersohn, R., & Isenberg, I. (1964). Phosphorescence in Nucleotides and Nucleic Acids. The Journal of Chemical Physics, 40(11), 3175-3180. doi:10.1063/1.1724980
Helene, C. (1966). Triplet-triplet energy transfer between nucleic acids derivatives in frozen aqueous solutions. Biochemical and Biophysical Research Communications, 22(3), 237-242. doi:10.1016/0006-291x(66)90471-2
Rahn, R. O., Shulman, R. G., & Longworth, J. W. (1966). Phosphorescence and Electron Spin Resonance Studies of the uv‐Excited Triplet State of DNA. The Journal of Chemical Physics, 45(8), 2955-2965. doi:10.1063/1.1728051
Eisinger, J., & Shulman, R. G. (1968). Excited Electronic States of DNA. Science, 161(3848), 1311-1319. doi:10.1126/science.161.3848.1311
Montenay-Garestier, T., & Helene, C. (1970). Interactions between cytidine and its cation in polycytidylic acid, cytidylyl-3’-cytidine, and cytidine aggregates. Biochemistry, 9(14), 2865-2870. doi:10.1021/bi00816a017
Görner, H. (1990). Phosphorescence of nucleic acids and DNA components at 77 K. Journal of Photochemistry and Photobiology B: Biology, 5(3-4), 359-377. doi:10.1016/1011-1344(90)85051-w
KLEINWÄCHTER, V., DROBNIK, J., & AUGENSTEIN, L. (1968). EMISSION SPECTRA FROM SYNTHETIC POLYNUCLEOTIDES AND DEOXYRIBONUCLEIC ACID IN AQUEOUS SOLUTIONS. Photochemistry and Photobiology, 7(5), 485-497. doi:10.1111/j.1751-1097.1968.tb07409.x
Aaron, J. J., Spann, W. J., & Winefordner, J. D. (1973). Quantitative phosphorescence study of interactions of cytosine and cytidine and its nucleotides in frozen aqueous solution☆Evidence for anomalous heavy-atom effect. Talanta, 20(9), 855-865. doi:10.1016/0039-9140(73)80201-2
Guéron, M., Eisinger, J., & Shulman, R. G. (1967). Excited States of Nucleotides and Singlet Energy Transfer in Polynucleotides. The Journal of Chemical Physics, 47(10), 4077-4091. doi:10.1063/1.1701580
Isenberg, I., Rosenbluth, R., & Baird, S. L. (1967). Comparative Phosphorescence Quenching of DNA’s of Different Composition. Biophysical Journal, 7(4), 365-373. doi:10.1016/s0006-3495(67)86594-9
Hélène, C., & Montenay-Garestier, T. (1968). Excitation energy transfer in molecular aggregates of nucleic acid derivatives in frozen aqueous solutions. Chemical Physics Letters, 2(1), 25-28. doi:10.1016/0009-2614(68)80137-x
Eisinger, J., & Shulman, R. G. (1967). Energy transfer in poly dAT. Journal of Molecular Biology, 28(3), 445-449. doi:10.1016/s0022-2836(67)80093-7
Becker, R. S., & Kogan, G. (1980). PHOTOPHYSICAL PROPERTIES OF NUCLEIC ACID COMPONENTS—1. THE PYRIMIDINES: THYMINE, URACIL, N, N-DIMETHYL DERIVATIVES AND THYMIDINE. Photochemistry and Photobiology, 31(1), 5-13. doi:10.1111/j.1751-1097.1980.tb03675.x
Salet, C., Bensasson, R., & Becker, R. S. (1979). TRIPLET EXCITED STATES OF PYRIMIDINE NUCLEOSIDES AND NUCLEOTIDES. Photochemistry and Photobiology, 30(3), 325-329. doi:10.1111/j.1751-1097.1979.tb07363.x
Salet, C., & Bensasson, R. (1975). STUDIES ON THYMINE AND URACIL TRIPLET EXCITED STATE IN ACETONITRILE AND WATER. Photochemistry and Photobiology, 22(6), 231-235. doi:10.1111/j.1751-1097.1975.tb06741.x
Kasama, K., Takematsu, A., & Arai, S. (1982). Photochemical reactions of triplet acetone with indole, purine, and pyrimidine derivatives. The Journal of Physical Chemistry, 86(13), 2420-2427. doi:10.1021/j100210a035
Zuo, Z., Yao, S., Luo, J., Wang, W., Zhang, J., & Lin, N. (1992). Laser photolysis of cytosine, cytidine and dCMP in aqueous solution. Journal of Photochemistry and Photobiology B: Biology, 15(3), 215-222. doi:10.1016/1011-1344(92)85125-e
Gut, I. G., Wood, P. D., & Redmond, R. W. (1996). Interaction of Triplet Photosensitizers with Nucleotides and DNA in Aqueous Solution at Room Temperature. Journal of the American Chemical Society, 118(10), 2366-2373. doi:10.1021/ja9519344
(s. f.). doi:10.1021/ja954340
Song, Q., Lin, W., Yao, S., & Lin, N. (1998). Comparative studies of triplet states of thymine components by acetone sensitization and direct excitation in aqueous solution at room temperature. Journal of Photochemistry and Photobiology A: Chemistry, 114(3), 181-184. doi:10.1016/s1010-6030(98)00219-6
Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770
Samoylova, E., Lippert, H., Ullrich, S., Hertel, I. V., Radloff, W., & Schultz, T. (2005). Dynamics of Photoinduced Processes in Adenine and Thymine Base Pairs. Journal of the American Chemical Society, 127(6), 1782-1786. doi:10.1021/ja044369q
Schreier, W. J., Schrader, T. E., Koller, F. O., Gilch, P., Crespo-Hernandez, C. E., Swaminathan, V. N., … Kohler, B. (2007). Thymine Dimerization in DNA Is an Ultrafast Photoreaction. Science, 315(5812), 625-629. doi:10.1126/science.1135428
Hare, P. M., Middleton, C. T., Mertel, K. I., Herbert, J. M., & Kohler, B. (2008). Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine. Chemical Physics, 347(1-3), 383-392. doi:10.1016/j.chemphys.2007.10.035
Kwok, W.-M., Ma, C., & Phillips, D. L. (2008). A Doorway State Leads to Photostability or Triplet Photodamage in Thymine DNA. Journal of the American Chemical Society, 130(15), 5131-5139. doi:10.1021/ja077831q
Marguet, S., & Markovitsi, D. (2005). Time-Resolved Study of Thymine Dimer Formation. Journal of the American Chemical Society, 127(16), 5780-5781. doi:10.1021/ja050648h
Wagner, J. R., Lier, J.-E. van, & JOHNSTON, L. J. (1990). QUINONE SENSITIZED ELECTRON TRANSFER PHOTOOXIDATION OF NUCLEIC ACIDS: CHEMISTRY OF THYMINE AND THYMIDINE RADICAL CATIONS IN AQUEOUS SOLUTION. Photochemistry and Photobiology, 52(2), 333-343. doi:10.1111/j.1751-1097.1990.tb04189.x
[-]