Pickersgill, B. (2007). Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics. Annals of Botany, 100(5), 925-940. doi:10.1093/aob/mcm193
Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE, 7(10), e48198. doi:10.1371/journal.pone.0048198
Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507
[+]
Pickersgill, B. (2007). Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics. Annals of Botany, 100(5), 925-940. doi:10.1093/aob/mcm193
Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE, 7(10), e48198. doi:10.1371/journal.pone.0048198
Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507
Paran, I., & van der Knaap, E. (2007). Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 58(14), 3841-3852. doi:10.1093/jxb/erm257
Tanksley, S. D. (2004). The Genetic, Developmental, and Molecular Bases of Fruit Size and Shape Variation in Tomato. THE PLANT CELL ONLINE, 16(suppl_1), S181-S189. doi:10.1105/tpc.018119
Grandillo, S., Ku, H. M., & Tanksley, S. D. (1999). Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics, 99(6), 978-987. doi:10.1007/s001220051405
Frary, A. (2000). fw2.2: A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85
Guo, M., Rupe, M. A., Dieter, J. A., Zou, J., Spielbauer, D., Duncan, K. E., … Simmons, C. R. (2010). Cell Number Regulator1 Affects Plant and Organ Size in Maize: Implications for Crop Yield Enhancement and Heterosis. The Plant Cell, 22(4), 1057-1073. doi:10.1105/tpc.109.073676
Libault, M., Zhang, X.-C., Govindarajulu, M., Qiu, J., Ong, Y. T., Brechenmacher, L., … Stacey, G. (2010). A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. The Plant Journal, 62(5), 852-864. doi:10.1111/j.1365-313x.2010.04201.x
Van der Knaap, E., & Tanksley, S. D. (2003). The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theoretical and Applied Genetics, 107(1), 139-147. doi:10.1007/s00122-003-1224-1
Zhang, N., Brewer, M. T., & van der Knaap, E. (2012). Fine mapping of fw3.2 controlling fruit weight in tomato. Theoretical and Applied Genetics, 125(2), 273-284. doi:10.1007/s00122-012-1832-8
Blas, A. L., Yu, Q., Veatch, O. J., Paull, R. E., Moore, P. H., & Ming, R. (2011). Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya. Molecular Breeding, 29(2), 457-466. doi:10.1007/s11032-011-9562-1
Costantini, L., Battilana, J., Lamaj, F., Fanizza, G., & Grando, M. (2008). Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes. BMC Plant Biology, 8(1), 38. doi:10.1186/1471-2229-8-38
Eduardo, I., Pacheco, I., Chietera, G., Bassi, D., Pozzi, C., Vecchietti, A., & Rossini, L. (2010). QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genetics & Genomes, 7(2), 323-335. doi:10.1007/s11295-010-0334-6
Zhang, G., Sebolt, A. M., Sooriyapathirana, S. S., Wang, D., Bink, M. C., Olmstead, J. W., & Iezzoni, A. F. (2009). Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genetics & Genomes, 6(1), 25-36. doi:10.1007/s11295-009-0225-x
Ranc, N., Muños, S., Santoni, S., & Causse, M. (2008). A clarified position for solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biology, 8(1), 130. doi:10.1186/1471-2229-8-130
Anastasiou, E., Kenz, S., Gerstung, M., MacLean, D., Timmer, J., Fleck, C., & Lenhard, M. (2007). Control of Plant Organ Size by KLUH/CYP78A5-Dependent Intercellular Signaling. Developmental Cell, 13(6), 843-856. doi:10.1016/j.devcel.2007.10.001
Paterson, A. H., Lin, Y.-R., Li, Z., Schertz, K. F., Doebley, J. F., Pinson, S. R. M., … Irvine, J. E. (1995). Convergent Domestication of Cereal Crops by Independent Mutations at Corresponding Genetic Loci. Science, 269(5231), 1714-1718. doi:10.1126/science.269.5231.1714
Adamski, N. M., Anastasiou, E., Eriksson, S., O’Neill, C. M., & Lenhard, M. (2009). Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proceedings of the National Academy of Sciences, 106(47), 20115-20120. doi:10.1073/pnas.0907024106
Fang, W., Wang, Z., Cui, R., Li, J., & Li, Y. (2012). Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. The Plant Journal, 70(6), 929-939. doi:10.1111/j.1365-313x.2012.04907.x
Ito, T., & Meyerowitz, E. M. (2000). Overexpression of a Gene Encoding a Cytochrome P450, CYP78A9, Induces Large and Seedless Fruit in Arabidopsis. The Plant Cell, 12(9), 1541-1550. doi:10.1105/tpc.12.9.1541
Miyoshi, K., Ahn, B.-O., Kawakatsu, T., Ito, Y., Itoh, J.-I., Nagato, Y., & Kurata, N. (2004). PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proceedings of the National Academy of Sciences, 101(3), 875-880. doi:10.1073/pnas.2636936100
KATSUMATA, T., FUKAZAWA, J., MAGOME, H., JIKUMARU, Y., KAMIYA, Y., NATSUME, M., … YAMAGUCHI, S. (2011). Involvement of the CYP78A Subfamily of Cytochrome P450 Monooxygenases in Protonema Growth and Gametophore Formation in the MossPhyscomitrella patens. Bioscience, Biotechnology, and Biochemistry, 75(2), 331-336. doi:10.1271/bbb.100759
Meyer, K. B., Maia, A.-T., O’Reilly, M., Ghoussaini, M., Prathalingam, R., Porter-Gill, P., … Ponder, B. A. J. (2011). A Functional Variant at a Prostate Cancer Predisposition Locus at 8q24 Is Associated with PVT1 Expression. PLoS Genetics, 7(7), e1002165. doi:10.1371/journal.pgen.1002165
Näkki, A., Kouhia, S. T., Saarela, J., Harilainen, A., Tallroth, K., Videman, T., … Kujala, U. M. (2010). Allelic variants of IL1R1gene associate with severe hand osteoarthritis. BMC Medical Genetics, 11(1). doi:10.1186/1471-2350-11-50
Nischwitz, S., Cepok, S., Kroner, A., Wolf, C., Knop, M., Müller-Sarnowski, F., … Weber, F. (2010). More CLEC16A gene variants associated with multiple sclerosis. Acta Neurologica Scandinavica, 123(6), 400-406. doi:10.1111/j.1600-0404.2010.01421.x
Uno, S., Zembutsu, H., Hirasawa, A., Takahashi, A., Kubo, M., Akahane, T., … Nakamura, Y. (2010). A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nature Genetics, 42(8), 707-710. doi:10.1038/ng.612
Sandal, N. N., Bojsen, K., & Marcker, K. A. (1987). A small family of nodule specific genes from soybean. Nucleic Acids Research, 15(4), 1507-1519. doi:10.1093/nar/15.4.1507
Stougaard, J., J�rgensen, J.-E., Christensen, T., K�hle, A., & Marcker, K. A. (1990). Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc 3 and N23 gene promoters. MGG Molecular & General Genetics, 220(3), 353-360. doi:10.1007/bf00391738
Vieweg, M. F., Frühling, M., Quandt, H.-J., Heim, U., Bäumlein, H., Pühler, A., … Perlick, A. M. (2004). The Promoter of theVicia fabaL. Leghemoglobin GeneVfLb29Is Specifically Activated in the Infected Cells of Root Nodules and in the Arbuscule-Containing Cells of Mycorrhizal Roots from Different Legume and Nonlegume Plants. Molecular Plant-Microbe Interactions, 17(1), 62-69. doi:10.1094/mpmi.2004.17.1.62
Gillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: A Developmental Perspective. The Plant Cell, 1439-1451. doi:10.1105/tpc.5.10.1439
Iglesias, D. J., Cercós, M., Colmenero-Flores, J. M., Naranjo, M. A., Ríos, G., Carrera, E., … Talon, M. (2007). Physiology of citrus fruiting. Brazilian Journal of Plant Physiology, 19(4), 333-362. doi:10.1590/s1677-04202007000400006
Marcelis, L. F. M., & Baan Hofman-Eijer, L. R. (1993). Cell division and expansion in the cucumber fruit. Journal of Horticultural Science, 68(5), 665-671. doi:10.1080/00221589.1993.11516398
Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1), 49. doi:10.1186/1471-2229-9-49
Cong, B., Liu, J., & Tanksley, S. D. (2002). Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proceedings of the National Academy of Sciences, 99(21), 13606-13611. doi:10.1073/pnas.172520999
Rao, G. U., Ben Chaim, A., Borovsky, Y., & Paran, I. (2003). Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theoretical and Applied Genetics, 106(8), 1457-1466. doi:10.1007/s00122-003-1204-5
Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology, 141(1), 15-25. doi:10.1104/pp.106.077867
Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J., & van der Knaap, E. (2008). A Retrotransposon-Mediated Gene Duplication Underlies Morphological Variation of Tomato Fruit. Science, 319(5869), 1527-1530. doi:10.1126/science.1153040
Huang, Z., Van Houten, J., Gonzalez, G., Xiao, H., & van der Knaap, E. (2013). Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Molecular Genetics and Genomics, 288(3-4), 111-129. doi:10.1007/s00438-013-0733-0
Ben-Chaim, A., Borovsky, Y., Falise, M., Mazourek, M., Kang, B.-C., Paran, I., & Jahn, M. (2006). QTL analysis for capsaicinoid content in Capsicum. Theoretical and Applied Genetics, 113(8), 1481-1490. doi:10.1007/s00122-006-0395-y
Schardl, C. L., Byrd, A. D., Benzion, G., Altschuler, M. A., Hildebrand, D. F., & Hunt, A. G. (1987). Design and construction of a versatile system for the expression of foreign genes in plants. Gene, 61(1), 1-11. doi:10.1016/0378-1119(87)90359-3
Ossowski, S., Schwab, R., & Weigel, D. (2008). Gene silencing in plants using artificial microRNAs and other small RNAs. The Plant Journal, 53(4), 674-690. doi:10.1111/j.1365-313x.2007.03328.x
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308
FALUSH, D., STEPHENS, M., & PRITCHARD, J. K. (2007). Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, 7(4), 574-578. doi:10.1111/j.1471-8286.2007.01758.x
Hardy, O. J., & Vekemans, X. (2002). spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2(4), 618-620. doi:10.1046/j.1471-8286.2002.00305.x
Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. doi:10.1093/bioinformatics/btp187
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121
[-]