Mostrar el registro sencillo del ítem
dc.contributor.author | Chakrabarti, Manohar | es_ES |
dc.contributor.author | Zhang, Na | es_ES |
dc.contributor.author | Sauvage, Christopher | es_ES |
dc.contributor.author | Muños, Stéphane | es_ES |
dc.contributor.author | Blanca Postigo, José Miguel | es_ES |
dc.contributor.author | Cañizares Sales, Joaquín | es_ES |
dc.contributor.author | Díez Niclós, Mª José Teresa de Jesús | es_ES |
dc.contributor.author | Schneider, Rhiannon | es_ES |
dc.contributor.author | Mazourek, Michael | es_ES |
dc.contributor.author | McClead, Jammi | es_ES |
dc.contributor.author | Causse, Mathilde | es_ES |
dc.contributor.author | Van Der Knaap, Esther Klazina Maria | es_ES |
dc.date.accessioned | 2016-04-14T12:09:13Z | |
dc.date.available | 2016-04-14T12:09:13Z | |
dc.date.issued | 2013-10-15 | |
dc.identifier.issn | 0027-8424 | |
dc.identifier.uri | http://hdl.handle.net/10251/62559 | |
dc.description.abstract | Domestication of crop plants had effects on human lifestyle and agriculture. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit appearance as a consequence of selection by early farmers. We report the fine mapping and cloning of a tomato (Solanum lycopersicum) fruit mass gene encoding the ortholog of KLUH, SlKLUH, a P450 enzyme of the CYP78A subfamily. The increase in fruit mass is predominantly the result of enlarged pericarp and septum tissues caused by increased cell number in the large fruited lines. SlKLUH also modulates plant architecture by regulating number and length of the side shoots, and ripening time, and these effects are particularly strong in plants that transgenically down-regulate SlKLUH expression carrying fruits of a dramatically reduced mass. Association mapping followed by segregation analyses revealed that a single nucleotide polymorphism in the promoter of the gene is highly associated with fruit mass. This single polymorphism may potentially underlie a regulatory mutation resulting in increased SlKLUH expression concomitant with increased fruit mass. Our findings suggest that the allele giving rise to large fruit arose in the early domesticates of tomato and becoming progressively more abundant upon further selections. We also detected association of fruit weight with CaKLUH in chile pepper (Capsicum annuum) suggesting that selection of the orthologous gene may have occurred independently in a separate domestication event. Altogether, our findings shed light on the molecular basis of fruit mass, a key domestication trait in tomato and other fruit and vegetable crops. | es_ES |
dc.description.sponsorship | We thank Dr. D. Choi (Seoul National University) for providing DNA sequence of chile pepper CaKLUH region; and Molecular and Cellular Imaging Center, The Ohio State University, for assistance with microscopy. This work was supported by National Science Foundation Grant IOS-0922661 (to E.v.d.K.). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | National Academy of Sciences | es_ES |
dc.relation.ispartof | Proceedings of the National Academy of Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fruit size | es_ES |
dc.subject | Maternal control | es_ES |
dc.subject | Shape variation | es_ES |
dc.subject | Gene family | es_ES |
dc.subject | Organ size | es_ES |
dc.subject | Seed size | es_ES |
dc.subject | Loci | es_ES |
dc.subject | Plants | es_ES |
dc.subject | Expression | es_ES |
dc.subject | Variants | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | A cytochrome P450 regulates a domestication trait in cultivated tomato | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1073/pnas.1307313110 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//0922661/US/Discovery of Genes and Networks Regulating Tomato Fruit Morphology/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Chakrabarti, M.; Zhang, N.; Sauvage, C.; Muños, S.; Blanca Postigo, JM.; Cañizares Sales, J.; Díez Niclós, MJTDJ.... (2013). A cytochrome P450 regulates a domestication trait in cultivated tomato. Proceedings of the National Academy of Sciences. 110(42):17125-17130. doi:10.1073/pnas.1307313110 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1073/pnas.1307313110 | es_ES |
dc.description.upvformatpinicio | 17125 | es_ES |
dc.description.upvformatpfin | 17130 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 110 | es_ES |
dc.description.issue | 42 | es_ES |
dc.relation.senia | 252883 | es_ES |
dc.identifier.eissn | 1091-6490 | |
dc.identifier.pmid | 24082112 | es_ES |
dc.identifier.pmcid | PMC3801035 | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.description.references | Pickersgill, B. (2007). Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics. Annals of Botany, 100(5), 925-940. doi:10.1093/aob/mcm193 | es_ES |
dc.description.references | Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE, 7(10), e48198. doi:10.1371/journal.pone.0048198 | es_ES |
dc.description.references | Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507 | es_ES |
dc.description.references | Paran, I., & van der Knaap, E. (2007). Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 58(14), 3841-3852. doi:10.1093/jxb/erm257 | es_ES |
dc.description.references | Tanksley, S. D. (2004). The Genetic, Developmental, and Molecular Bases of Fruit Size and Shape Variation in Tomato. THE PLANT CELL ONLINE, 16(suppl_1), S181-S189. doi:10.1105/tpc.018119 | es_ES |
dc.description.references | Grandillo, S., Ku, H. M., & Tanksley, S. D. (1999). Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics, 99(6), 978-987. doi:10.1007/s001220051405 | es_ES |
dc.description.references | Frary, A. (2000). fw2.2: A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85 | es_ES |
dc.description.references | Guo, M., Rupe, M. A., Dieter, J. A., Zou, J., Spielbauer, D., Duncan, K. E., … Simmons, C. R. (2010). Cell Number Regulator1 Affects Plant and Organ Size in Maize: Implications for Crop Yield Enhancement and Heterosis. The Plant Cell, 22(4), 1057-1073. doi:10.1105/tpc.109.073676 | es_ES |
dc.description.references | Libault, M., Zhang, X.-C., Govindarajulu, M., Qiu, J., Ong, Y. T., Brechenmacher, L., … Stacey, G. (2010). A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. The Plant Journal, 62(5), 852-864. doi:10.1111/j.1365-313x.2010.04201.x | es_ES |
dc.description.references | Van der Knaap, E., & Tanksley, S. D. (2003). The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theoretical and Applied Genetics, 107(1), 139-147. doi:10.1007/s00122-003-1224-1 | es_ES |
dc.description.references | Zhang, N., Brewer, M. T., & van der Knaap, E. (2012). Fine mapping of fw3.2 controlling fruit weight in tomato. Theoretical and Applied Genetics, 125(2), 273-284. doi:10.1007/s00122-012-1832-8 | es_ES |
dc.description.references | Blas, A. L., Yu, Q., Veatch, O. J., Paull, R. E., Moore, P. H., & Ming, R. (2011). Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya. Molecular Breeding, 29(2), 457-466. doi:10.1007/s11032-011-9562-1 | es_ES |
dc.description.references | Costantini, L., Battilana, J., Lamaj, F., Fanizza, G., & Grando, M. (2008). Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes. BMC Plant Biology, 8(1), 38. doi:10.1186/1471-2229-8-38 | es_ES |
dc.description.references | Eduardo, I., Pacheco, I., Chietera, G., Bassi, D., Pozzi, C., Vecchietti, A., & Rossini, L. (2010). QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genetics & Genomes, 7(2), 323-335. doi:10.1007/s11295-010-0334-6 | es_ES |
dc.description.references | Zhang, G., Sebolt, A. M., Sooriyapathirana, S. S., Wang, D., Bink, M. C., Olmstead, J. W., & Iezzoni, A. F. (2009). Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genetics & Genomes, 6(1), 25-36. doi:10.1007/s11295-009-0225-x | es_ES |
dc.description.references | Ranc, N., Muños, S., Santoni, S., & Causse, M. (2008). A clarified position for solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biology, 8(1), 130. doi:10.1186/1471-2229-8-130 | es_ES |
dc.description.references | Anastasiou, E., Kenz, S., Gerstung, M., MacLean, D., Timmer, J., Fleck, C., & Lenhard, M. (2007). Control of Plant Organ Size by KLUH/CYP78A5-Dependent Intercellular Signaling. Developmental Cell, 13(6), 843-856. doi:10.1016/j.devcel.2007.10.001 | es_ES |
dc.description.references | Paterson, A. H., Lin, Y.-R., Li, Z., Schertz, K. F., Doebley, J. F., Pinson, S. R. M., … Irvine, J. E. (1995). Convergent Domestication of Cereal Crops by Independent Mutations at Corresponding Genetic Loci. Science, 269(5231), 1714-1718. doi:10.1126/science.269.5231.1714 | es_ES |
dc.description.references | Adamski, N. M., Anastasiou, E., Eriksson, S., O’Neill, C. M., & Lenhard, M. (2009). Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proceedings of the National Academy of Sciences, 106(47), 20115-20120. doi:10.1073/pnas.0907024106 | es_ES |
dc.description.references | Fang, W., Wang, Z., Cui, R., Li, J., & Li, Y. (2012). Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. The Plant Journal, 70(6), 929-939. doi:10.1111/j.1365-313x.2012.04907.x | es_ES |
dc.description.references | Ito, T., & Meyerowitz, E. M. (2000). Overexpression of a Gene Encoding a Cytochrome P450, CYP78A9, Induces Large and Seedless Fruit in Arabidopsis. The Plant Cell, 12(9), 1541-1550. doi:10.1105/tpc.12.9.1541 | es_ES |
dc.description.references | Miyoshi, K., Ahn, B.-O., Kawakatsu, T., Ito, Y., Itoh, J.-I., Nagato, Y., & Kurata, N. (2004). PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proceedings of the National Academy of Sciences, 101(3), 875-880. doi:10.1073/pnas.2636936100 | es_ES |
dc.description.references | KATSUMATA, T., FUKAZAWA, J., MAGOME, H., JIKUMARU, Y., KAMIYA, Y., NATSUME, M., … YAMAGUCHI, S. (2011). Involvement of the CYP78A Subfamily of Cytochrome P450 Monooxygenases in Protonema Growth and Gametophore Formation in the MossPhyscomitrella patens. Bioscience, Biotechnology, and Biochemistry, 75(2), 331-336. doi:10.1271/bbb.100759 | es_ES |
dc.description.references | Meyer, K. B., Maia, A.-T., O’Reilly, M., Ghoussaini, M., Prathalingam, R., Porter-Gill, P., … Ponder, B. A. J. (2011). A Functional Variant at a Prostate Cancer Predisposition Locus at 8q24 Is Associated with PVT1 Expression. PLoS Genetics, 7(7), e1002165. doi:10.1371/journal.pgen.1002165 | es_ES |
dc.description.references | Näkki, A., Kouhia, S. T., Saarela, J., Harilainen, A., Tallroth, K., Videman, T., … Kujala, U. M. (2010). Allelic variants of IL1R1gene associate with severe hand osteoarthritis. BMC Medical Genetics, 11(1). doi:10.1186/1471-2350-11-50 | es_ES |
dc.description.references | Nischwitz, S., Cepok, S., Kroner, A., Wolf, C., Knop, M., Müller-Sarnowski, F., … Weber, F. (2010). More CLEC16A gene variants associated with multiple sclerosis. Acta Neurologica Scandinavica, 123(6), 400-406. doi:10.1111/j.1600-0404.2010.01421.x | es_ES |
dc.description.references | Uno, S., Zembutsu, H., Hirasawa, A., Takahashi, A., Kubo, M., Akahane, T., … Nakamura, Y. (2010). A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nature Genetics, 42(8), 707-710. doi:10.1038/ng.612 | es_ES |
dc.description.references | Sandal, N. N., Bojsen, K., & Marcker, K. A. (1987). A small family of nodule specific genes from soybean. Nucleic Acids Research, 15(4), 1507-1519. doi:10.1093/nar/15.4.1507 | es_ES |
dc.description.references | Stougaard, J., J�rgensen, J.-E., Christensen, T., K�hle, A., & Marcker, K. A. (1990). Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc 3 and N23 gene promoters. MGG Molecular & General Genetics, 220(3), 353-360. doi:10.1007/bf00391738 | es_ES |
dc.description.references | Vieweg, M. F., Frühling, M., Quandt, H.-J., Heim, U., Bäumlein, H., Pühler, A., … Perlick, A. M. (2004). The Promoter of theVicia fabaL. Leghemoglobin GeneVfLb29Is Specifically Activated in the Infected Cells of Root Nodules and in the Arbuscule-Containing Cells of Mycorrhizal Roots from Different Legume and Nonlegume Plants. Molecular Plant-Microbe Interactions, 17(1), 62-69. doi:10.1094/mpmi.2004.17.1.62 | es_ES |
dc.description.references | Gillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: A Developmental Perspective. The Plant Cell, 1439-1451. doi:10.1105/tpc.5.10.1439 | es_ES |
dc.description.references | Iglesias, D. J., Cercós, M., Colmenero-Flores, J. M., Naranjo, M. A., Ríos, G., Carrera, E., … Talon, M. (2007). Physiology of citrus fruiting. Brazilian Journal of Plant Physiology, 19(4), 333-362. doi:10.1590/s1677-04202007000400006 | es_ES |
dc.description.references | Marcelis, L. F. M., & Baan Hofman-Eijer, L. R. (1993). Cell division and expansion in the cucumber fruit. Journal of Horticultural Science, 68(5), 665-671. doi:10.1080/00221589.1993.11516398 | es_ES |
dc.description.references | Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1), 49. doi:10.1186/1471-2229-9-49 | es_ES |
dc.description.references | Cong, B., Liu, J., & Tanksley, S. D. (2002). Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proceedings of the National Academy of Sciences, 99(21), 13606-13611. doi:10.1073/pnas.172520999 | es_ES |
dc.description.references | Rao, G. U., Ben Chaim, A., Borovsky, Y., & Paran, I. (2003). Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theoretical and Applied Genetics, 106(8), 1457-1466. doi:10.1007/s00122-003-1204-5 | es_ES |
dc.description.references | Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology, 141(1), 15-25. doi:10.1104/pp.106.077867 | es_ES |
dc.description.references | Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J., & van der Knaap, E. (2008). A Retrotransposon-Mediated Gene Duplication Underlies Morphological Variation of Tomato Fruit. Science, 319(5869), 1527-1530. doi:10.1126/science.1153040 | es_ES |
dc.description.references | Huang, Z., Van Houten, J., Gonzalez, G., Xiao, H., & van der Knaap, E. (2013). Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Molecular Genetics and Genomics, 288(3-4), 111-129. doi:10.1007/s00438-013-0733-0 | es_ES |
dc.description.references | Ben-Chaim, A., Borovsky, Y., Falise, M., Mazourek, M., Kang, B.-C., Paran, I., & Jahn, M. (2006). QTL analysis for capsaicinoid content in Capsicum. Theoretical and Applied Genetics, 113(8), 1481-1490. doi:10.1007/s00122-006-0395-y | es_ES |
dc.description.references | Schardl, C. L., Byrd, A. D., Benzion, G., Altschuler, M. A., Hildebrand, D. F., & Hunt, A. G. (1987). Design and construction of a versatile system for the expression of foreign genes in plants. Gene, 61(1), 1-11. doi:10.1016/0378-1119(87)90359-3 | es_ES |
dc.description.references | Ossowski, S., Schwab, R., & Weigel, D. (2008). Gene silencing in plants using artificial microRNAs and other small RNAs. The Plant Journal, 53(4), 674-690. doi:10.1111/j.1365-313x.2007.03328.x | es_ES |
dc.description.references | Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308 | es_ES |
dc.description.references | FALUSH, D., STEPHENS, M., & PRITCHARD, J. K. (2007). Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, 7(4), 574-578. doi:10.1111/j.1471-8286.2007.01758.x | es_ES |
dc.description.references | Hardy, O. J., & Vekemans, X. (2002). spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2(4), 618-620. doi:10.1046/j.1471-8286.2002.00305.x | es_ES |
dc.description.references | Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. doi:10.1093/bioinformatics/btp187 | es_ES |
dc.description.references | Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121 | es_ES |