- -

Highly sensitive and ultrafast read mapping for RNA-seq analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Highly sensitive and ultrafast read mapping for RNA-seq analysis

Mostrar el registro completo del ítem

Medina, I.; Tárraga, J.; Martínez, H.; Barrachina, S.; Castillo, MI.; Paschall, J.; Salavert Torres, J.... (2016). Highly sensitive and ultrafast read mapping for RNA-seq analysis. DNA Research. 1(1):1-8. https://doi.org/10.1093/dnares/dsv039

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62698

Ficheros en el ítem

Metadatos del ítem

Título: Highly sensitive and ultrafast read mapping for RNA-seq analysis
Autor: Medina, I. Tárraga, J. Martínez, H, Barrachina, S. Castillo, M. I. Paschall, J. Salavert Torres, José Blanquer Espert, Ignacio Hernández García, Vicente Quintana Ortí, Enrique Salvador Dopazo, J.
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
As sequencing technologies progress, the amount of data produced grows exponentially, shifting the bottleneck of discovery towards the data analysis phase. In particular, currently available mapping solutions for RNA-seq ...[+]
Palabras clave: RNA-seq , Mapping , Burrows-Wheeler Transform , High-performance computing
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
DNA Research. (issn: 1340-2838 )
DOI: 10.1093/dnares/dsv039
Editorial:
Oxford University Press
Versión del editor: http://dx.doi.org/ 10.1093/dnares/dsv039
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIO2014-57291-R/ES/NUEVAS ESTRATEGIAS PARA EL DESCUBRIMIENTO DE DIANAS MOLECULARES Y DISEÑO DE NUEVAS APROXIMACIONES TERAPEUTICAS CONTRA EL CANCER Y OTRAS ENFERMEDADES BASADAS EN BIOLOGIA DE SIS/
info:eu-repo/grantAgreement/MAEC//D%2F016099%2F08/ES/ACCION PARA EL FORTALECIMIENTO CIENTÍFICO TECNOLÓGICO EN ÁREAS RELACIONADAS CON LA GENÓMICA Y BIOINFORMÁTICA APLICADAS A LOS SISTEMAS AGROPECUARIOS/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F025/
Agradecimientos:
This work is supported by grants from the Spanish Ministry of Economy and Competitiveness (BIO2014-57291-R) and co-funded with European Regional Development Funds (ERDF), AECID (D/016099/08) and from the Conselleria ...[+]
Tipo: Artículo

References

Garber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469-477. doi:10.1038/nmeth.1613

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 18(9), 1509-1517. doi:10.1101/gr.079558.108

Li, H., & Homer, N. (2010). A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics, 11(5), 473-483. doi:10.1093/bib/bbq015 [+]
Garber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469-477. doi:10.1038/nmeth.1613

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 18(9), 1509-1517. doi:10.1101/gr.079558.108

Li, H., & Homer, N. (2010). A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics, 11(5), 473-483. doi:10.1093/bib/bbq015

Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25

Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., & Wang, J. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966-1967. doi:10.1093/bioinformatics/btp336

Homer, N., Merriman, B., & Nelson, S. F. (2009). BFAST: An Alignment Tool for Large Scale Genome Resequencing. PLoS ONE, 4(11), e7767. doi:10.1371/journal.pone.0007767

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324

Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26(5), 589-595. doi:10.1093/bioinformatics/btp698

Marco-Sola, S., Sammeth, M., Guigó, R., & Ribeca, P. (2012). The GEM mapper: fast, accurate and versatile alignment by filtration. Nature Methods, 9(12), 1185-1188. doi:10.1038/nmeth.2221

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. doi:10.1038/nmeth.1923

Tárraga, J., Arnau, V., Martínez, H., Moreno, R., Cazorla, D., Salavert-Torres, J., … Medina, I. (2014). Acceleration of short and long DNA read mapping without loss of accuracy using suffix array. Bioinformatics, 30(23), 3396-3398. doi:10.1093/bioinformatics/btu553

(2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146), 799-816. doi:10.1038/nature05874

Ameur, A., Wetterbom, A., Feuk, L., & Gyllensten, U. (2010). Global and unbiased detection of splice junctions from RNA-seq data. Genome Biology, 11(3), R34. doi:10.1186/gb-2010-11-3-r34

Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9), 1105-1111. doi:10.1093/bioinformatics/btp120

Wu, T. D., & Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics, 26(7), 873-881. doi:10.1093/bioinformatics/btq057

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. doi:10.1186/gb-2013-14-4-r36

Grant, G. R., Farkas, M. H., Pizarro, A. D., Lahens, N. F., Schug, J., Brunk, B. P., … Pierce, E. A. (2011). Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics, 27(18), 2518-2528. doi:10.1093/bioinformatics/btr427

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2012). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21. doi:10.1093/bioinformatics/bts635

Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., … Liu, J. (2010). MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Research, 38(18), e178-e178. doi:10.1093/nar/gkq622

Engström, P. G., Steijger, T., Sipos, B., Grant, G. R., Kahles, A., … Bertone, P. (2013). Systematic evaluation of spliced alignment programs for RNA-seq data. Nature Methods, 10(12), 1185-1191. doi:10.1038/nmeth.2722

Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. doi:10.1038/nmeth.3317

Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A., & Conesa, A. (2011). Differential expression in RNA-seq: A matter of depth. Genome Research, 21(12), 2213-2223. doi:10.1101/gr.124321.111

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., … Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511-515. doi:10.1038/nbt.1621

Altschul, S. (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1006/jmbi.1990.9999

Torres, J. S., Espert, I. B., Dominguez, A. T., Garcia, V. H., Castello, I. M., Gimenez, J. T., & Blazquez, J. D. (2012). Using GPUs for the Exact Alignment of Short-Read Genetic Sequences by Means of the Burrows-Wheeler Transform. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(4), 1245-1256. doi:10.1109/tcbb.2012.49

Alpern B. , Carter L. , Gatlin K. 1995, Microparallelism and high-performance protein matching. In: Proceedings of the ACM/IEEE Supercomputing Conference, San Diego, California, December 8, 1995, p. 24.

Martinez H. , Tarraga J. , Medina I. et al . 2013, EuroMPI ‘13 Proceedings of the 20th European MPI Users’ Group Meeting. In: A Dynamic Pipeline for RNA Sequencing on Multicore Processors, Madrid, Spain, September 15–18, 2013, pp. 235–40.

Flicek, P., Ahmed, I., Amode, M. R., Barrell, D., Beal, K., Brent, S., … Fairley, S. (2012). Ensembl 2013. Nucleic Acids Research, 41(D1), D48-D55. doi:10.1093/nar/gks1236

Soon, W. W., Hariharan, M., & Snyder, M. P. (2013). High‐throughput sequencing for biology and medicine. Molecular Systems Biology, 9(1), 640. doi:10.1038/msb.2012.61

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem