- -

Highly sensitive and ultrafast read mapping for RNA-seq analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Highly sensitive and ultrafast read mapping for RNA-seq analysis

Show simple item record

Files in this item

dc.contributor.author Medina, I. es_ES
dc.contributor.author Tárraga, J. es_ES
dc.contributor.author Martínez, H, es_ES
dc.contributor.author Barrachina, S. es_ES
dc.contributor.author Castillo, M. I. es_ES
dc.contributor.author Paschall, J. es_ES
dc.contributor.author Salavert Torres, José es_ES
dc.contributor.author Blanquer Espert, Ignacio es_ES
dc.contributor.author Hernández García, Vicente es_ES
dc.contributor.author Quintana Ortí, Enrique Salvador es_ES
dc.contributor.author Dopazo, J. es_ES
dc.date.accessioned 2016-04-18T07:25:36Z
dc.date.available 2016-04-18T07:25:36Z
dc.date.issued 2016-01
dc.identifier.issn 1340-2838
dc.identifier.uri http://hdl.handle.net/10251/62698
dc.description.abstract As sequencing technologies progress, the amount of data produced grows exponentially, shifting the bottleneck of discovery towards the data analysis phase. In particular, currently available mapping solutions for RNA-seq leave room for improvement in terms of sensitivity and performance, hindering an efficient analysis of transcriptomes by massive sequencing. Here, we present an innovative approach that combines re-engineering, optimization and parallelization. This solution results in a significant increase of mapping sensitivity over a wide range of read lengths and substantial shorter runtimes when compared with current RNA-seq mapping methods available. es_ES
dc.description.sponsorship This work is supported by grants from the Spanish Ministry of Economy and Competitiveness (BIO2014-57291-R) and co-funded with European Regional Development Funds (ERDF), AECID (D/016099/08) and from the Conselleria d'Educacio of the Valencian Community (PROMETEOII/2014/025). This work has been carried out in the context of the HPC4G initiative (http://www.hpc4g.org) and the Bull-CIPF Chair for Computational Genomics. Funding to pay the Open Access publication charges for this article was provided by grant BIO2014-57291-R from the Spanish Ministry of Economy and Competitiveness (MINECO), co-funded with European Regional Development Funds (ERDF). en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation Spanish Ministry of Economy and Competitiveness /MINECO/ BIO2014-57291-R es_ES
dc.relation European Regional Development Funds (ERDF)/ AECID /D/016099/08 es_ES
dc.relation Conselleria d’Educacio of the Valencian Community /PROMETEOII /2014/025 es_ES
dc.relation.ispartof DNA Research es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject RNA-seq es_ES
dc.subject Mapping es_ES
dc.subject Burrows-Wheeler Transform es_ES
dc.subject High-performance computing es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Highly sensitive and ultrafast read mapping for RNA-seq analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/dnares/dsv039
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Medina, I.; Tárraga, J.; Martínez, H.; Barrachina, S.; Castillo, MI.; Paschall, J.; Salavert Torres, J.... (2016). Highly sensitive and ultrafast read mapping for RNA-seq analysis. DNA Research. 1(1):1-8. doi:10.1093/dnares/dsv039 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/ 10.1093/dnares/dsv039 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 298896 es_ES
dc.identifier.pmid 26740642 en_EN
dc.identifier.pmcid PMC4833417 en_EN
dc.relation.references Garber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469-477. doi:10.1038/nmeth.1613 es_ES
dc.relation.references Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 18(9), 1509-1517. doi:10.1101/gr.079558.108 es_ES
dc.relation.references Li, H., & Homer, N. (2010). A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics, 11(5), 473-483. doi:10.1093/bib/bbq015 es_ES
dc.relation.references Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25 es_ES
dc.relation.references Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., & Wang, J. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966-1967. doi:10.1093/bioinformatics/btp336 es_ES
dc.relation.references Homer, N., Merriman, B., & Nelson, S. F. (2009). BFAST: An Alignment Tool for Large Scale Genome Resequencing. PLoS ONE, 4(11), e7767. doi:10.1371/journal.pone.0007767 es_ES
dc.relation.references Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324 es_ES
dc.relation.references Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26(5), 589-595. doi:10.1093/bioinformatics/btp698 es_ES
dc.relation.references Marco-Sola, S., Sammeth, M., Guigó, R., & Ribeca, P. (2012). The GEM mapper: fast, accurate and versatile alignment by filtration. Nature Methods, 9(12), 1185-1188. doi:10.1038/nmeth.2221 es_ES
dc.relation.references Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. doi:10.1038/nmeth.1923 es_ES
dc.relation.references Tárraga, J., Arnau, V., Martínez, H., Moreno, R., Cazorla, D., Salavert-Torres, J., … Medina, I. (2014). Acceleration of short and long DNA read mapping without loss of accuracy using suffix array. Bioinformatics, 30(23), 3396-3398. doi:10.1093/bioinformatics/btu553 es_ES
dc.relation.references (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146), 799-816. doi:10.1038/nature05874 es_ES
dc.relation.references Ameur, A., Wetterbom, A., Feuk, L., & Gyllensten, U. (2010). Global and unbiased detection of splice junctions from RNA-seq data. Genome Biology, 11(3), R34. doi:10.1186/gb-2010-11-3-r34 es_ES
dc.relation.references Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9), 1105-1111. doi:10.1093/bioinformatics/btp120 es_ES
dc.relation.references Wu, T. D., & Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics, 26(7), 873-881. doi:10.1093/bioinformatics/btq057 es_ES
dc.relation.references Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. doi:10.1186/gb-2013-14-4-r36 es_ES
dc.relation.references Grant, G. R., Farkas, M. H., Pizarro, A. D., Lahens, N. F., Schug, J., Brunk, B. P., … Pierce, E. A. (2011). Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics, 27(18), 2518-2528. doi:10.1093/bioinformatics/btr427 es_ES
dc.relation.references Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2012). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21. doi:10.1093/bioinformatics/bts635 es_ES
dc.relation.references Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., … Liu, J. (2010). MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Research, 38(18), e178-e178. doi:10.1093/nar/gkq622 es_ES
dc.relation.references Engström, P. G., Steijger, T., Sipos, B., Grant, G. R., Kahles, A., … Bertone, P. (2013). Systematic evaluation of spliced alignment programs for RNA-seq data. Nature Methods, 10(12), 1185-1191. doi:10.1038/nmeth.2722 es_ES
dc.relation.references Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. doi:10.1038/nmeth.3317 es_ES
dc.relation.references Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A., & Conesa, A. (2011). Differential expression in RNA-seq: A matter of depth. Genome Research, 21(12), 2213-2223. doi:10.1101/gr.124321.111 es_ES
dc.relation.references Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016 es_ES
dc.relation.references Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., … Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511-515. doi:10.1038/nbt.1621 es_ES
dc.relation.references Altschul, S. (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1006/jmbi.1990.9999 es_ES
dc.relation.references Torres, J. S., Espert, I. B., Dominguez, A. T., Garcia, V. H., Castello, I. M., Gimenez, J. T., & Blazquez, J. D. (2012). Using GPUs for the Exact Alignment of Short-Read Genetic Sequences by Means of the Burrows-Wheeler Transform. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(4), 1245-1256. doi:10.1109/tcbb.2012.49 es_ES
dc.relation.references Alpern B. , Carter L. , Gatlin K. 1995, Microparallelism and high-performance protein matching. In: Proceedings of the ACM/IEEE Supercomputing Conference, San Diego, California, December 8, 1995, p. 24. es_ES
dc.relation.references Martinez H. , Tarraga J. , Medina I. et al . 2013, EuroMPI ‘13 Proceedings of the 20th European MPI Users’ Group Meeting. In: A Dynamic Pipeline for RNA Sequencing on Multicore Processors, Madrid, Spain, September 15–18, 2013, pp. 235–40. es_ES
dc.relation.references Flicek, P., Ahmed, I., Amode, M. R., Barrell, D., Beal, K., Brent, S., … Fairley, S. (2012). Ensembl 2013. Nucleic Acids Research, 41(D1), D48-D55. doi:10.1093/nar/gks1236 es_ES
dc.relation.references Soon, W. W., Hariharan, M., & Snyder, M. P. (2013). High‐throughput sequencing for biology and medicine. Molecular Systems Biology, 9(1), 640. doi:10.1038/msb.2012.61 es_ES


This item appears in the following Collection(s)

Show simple item record